用户名: 密码: 验证码:
L_(4-5)椎体有限元模型建立及退变椎间盘力学分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Establishment of finite element model of L_(4-5) and mechanical analysis of degenerative intervertebral discs
  • 作者:文毅 ; 苏峰 ; 刘肃 ; 宗治国 ; 张鑫 ; 马朋朋 ; 李月轩 ; 李瑞 ; 张志敏
  • 英文作者:Wen Yi;Su Feng;Liu Su;Zong Zhiguo;Zhang Xin;Ma Pengpeng;Li Yuexuan;Li Rui;Zhang Zhimin;Graduate School, Hebei North University;Department of Spinal Surgery,the First Affiliated Hospital of Hebei North University;Department of Radiology, the First Affiliated Hospital of Hebei North University;
  • 关键词:腰椎 ; 椎间盘 ; 生物力学 ; 组织工程 ; 椎体有限元模型 ; 退变椎间盘 ; 腰椎力学分析 ; 纤维环水分 ; 椎间盘受力载荷
  • 英文关键词:,Lumbar Vertebrae;;Intervertebral Disk;;Biomechanics;;Tissue Engineering
  • 中文刊名:XDKF
  • 英文刊名:Chinese Journal of Tissue Engineering Research
  • 机构:河北北方学院研究生学院;河北北方学院附属第一医院脊柱外科;河北北方学院附属第一医院放射科;
  • 出版日期:2019-01-09
  • 出版单位:中国组织工程研究
  • 年:2019
  • 期:v.23;No.865
  • 基金:河北省省级重大医学科研课题(zd2013050),项目负责人:苏峰~~
  • 语种:中文;
  • 页:XDKF201908015
  • 页数:6
  • CN:08
  • ISSN:21-1581/R
  • 分类号:80-85
摘要
背景:脊柱在人体中起着承上启下的作用,把躯干上部的重力传递到腰骶部直至骨盆,L_(4-5)椎体处于脊柱的最下端,承受的载荷最大,其间的椎间盘亦承受相当的高应力,因此该部位椎间盘退变和突出高发。目的:建立人L,进行退变椎间盘力学仿真分析。4-5椎体及椎间盘有限元模型方法:利用GE64排螺旋CT对中年女性腰椎进行扫描,得到206层层厚为2 mm的CT断层DICOM图像,应用Mimics软件进行椎体的三维重建,再导入3-matic软件中建立椎间盘,划分面网格及体网格,再以CDB格式导入Mimics软件中赋予椎体及椎间盘材料属性,最后导入Ansys软件中建立韧带,进行L_(4-5)椎体及椎间盘的生物力学分析。结果与结论:(1)成功建立了可用于腰椎体及退变椎间盘力学分析的有限元模型;(2)站立情况下椎间盘前部承受的载荷较后部高(F=7.995,P <0.000 1),处于椎间盘中部的髓核承受载荷较前部纤维环低(t=5.013,P <0.000 1);(3)提示L_(4-5)椎体有限元模型从生物力学角度证实,髓核及后部椎间盘突出与前部纤维环承受高应力后向髓核及后部纤维环传递,前部纤维环对髓核和后部纤维环的挤压与椎间盘的退行性变密切相关。
        BACKGROUND: Spine plays a connecting link role in the human body. The gravity of the upper part of the trunk is transmitted to the lumbosacral region until the pelvis. L_(4-5) vertebral body is at the lowermost end of the spine, and the load is the largest. The intervertebral disc is also subjected to considerable high stress, so the intervertebral disc is prone to degeneration and herniation.OBJECTIVE: To establish a finite element model of human L_(4-5) vertebral body and intervertebral disc, and to conduct mechanical simulation analysis of degenerative disc. METHODS: The lumbar spine of adult women was scanned by GE64 spiral CT, and 206 CT DICOM images of 2 mm in thickness were obtained. Three-dimensional reconstruction of the vertebral body was performed with Mimics software. Then 3-matic software was used to establish the intervertebral disc, to divide surface mesh and volume mesh, and then models were imported the Mimics software in CDB format to give vertebral body and intervertebral disc material properties, and finally imported inte Ansys software to establish ligaments for biomechanical analysis of L_(4-5) vertebrae and intervertebral disc. RESULTS AND CONCLUSION:(1) The finite element model for the mechanical analysis of the lumbar vertebral body and the degenerated intervertebral disc was successfully established.(2) The standing force of the anterior disc was higher than that of the posterior part(F=7.995, P < 0.000 1). The nucleus in the middle of the intervertebral disc was subjected to the load compared with the anterior annulus. The anterior annulus was low(t=5.013, P < 0.000 1).(3) In summary, in the finite element model of the L_(4-5) vertebral body, the nucleus pulposus and the posterior disc herniation and the anterior annulus fibrosus are subjected to high stress and the posterior nucleus pulposus and posterior annulus fibrosus are transmitted from the biomechanical point of view. The compression of the nucleus and posterior annulus is closely related to the degeneration of the intervertebral disc.
引文
[1]贾连顺.现代脊柱外科学[M].北京:人民军医出版社,2007.
    [2]Schollum M, Wade K, Robertson P, et al. A Microstructural Investigation of Disc Disruption Induced by Low Frequency Cyclic Loading. Spine. 2018;43(3):E132-E142.
    [3]Chen W, Wang K, Yuan W, et al.[Relationship between lumbosacral multifidus muscle and lumbar disc herniation].Zhongguo Gu Shang. 2016;29(6):581-584.
    [4]Zhou X, Cheung C, Karasugi T, et al. Trans-ethnic polygenic analysis supports genetic overlaps of lumbar disc degeneration with height, body mass index, and bone mineral density. Front Genet. 2018;9:267.
    [5]Chen L, Liu D, Zou L, et al. Efficacy of high intensity laser therapy in treatment of patients with lumbar disc protrusion:A randomized controlled trial. J Back Musculoskelet Rehabil. 2018;31(1):191-196.
    [6]Ciesielska J, Lisiński P, Bandosz A, et al. Hip strategy alterations in patients with history of low disc herniation and non-specific low back pain measured by surface electromyography and balance platform. Acta Bioeng Biomech. 2015;17(3):103-108.
    [7]Pereira P, Severo M, Monteiro P, et al. Results of Lumbar Endoscopic Adhesiolysis Using a Radiofrequency Catheter in Patients with Postoperative Fibrosis and Persistent or Recurrent Symptoms After Discectomy. Pain Pract. 2016;16(1):67-79.
    [8]谢富荣,玉超杰.腰椎间盘突出[J].医药前沿, 2018,8(16):9-10.
    [9]Wang C, Chi Q, Xu C, et al. Expression of LOXs and MMP-1, 2, 3by ACL Fibroblasts and Synoviocytes Impact of Coculture and TNF-α. J Knee Surg. 2018.
    [10]Hu X, Liu L.[Progress on the cause and mechanism of a separation of clinical symptoms and signs and imaging features in lumbar disk herniation]. Zhongguo Gu Shang. 2015;28(10):970-975.
    [11]Chen S, Tai C, Lin C, et al. Biomechanical comparison of a new stand-alone anterior lumbar interbody fusion cage with established fixation techniques-a three-dimensional finite element analysis. BMC Musculoskelet Disord. 2008;9:88.
    [12]Rohlmann A, Zander T, Rao M, et al. Applying a follower load delivers realistic results for simulating standing. J Biomech. 2009;42(10):1520-1526.
    [13]尹庆水,章莹,王成焘,等.临床数字骨科学——创新理论体系与临床应用[J].中国矫形外科杂志,2012,20(7):649.
    [14]Meakin J, Smith F, Gilbert F, et al. The effect of axial load on the sagittal plane curvature of the upright human spine in vivo. J Biomech. 2008;41(13):2850-2854.
    [15]Rohlmann A, Zander T, Rao M, et al. Realistic loading conditions for upper body bending. J Biomech. 2009;42(7):884-890.
    [16]Yang L, Yang Y, Yang X, et al.[Design and clinical application of a three-dimensional biomechanical traction appliance for protrusion of intervertebral disc]. Zhongguo Yi Liao Qi Xie Za Zhi. 2002;26(3):190-191.
    [17]Chen C, Shih S. Biomechanical analysis of a new lumbar interspinous device with optimized topology. Med Biol Eng Comput. 2018;56(8):1333-1341.
    [18]Li L, Shen T, Li Y. A Finite Element Analysis of Stress Distribution and Disk Displacement in Response to Lumbar Rotation Manipulation in the Sitting and Side-Lying Positions. J Manipulative Physiol Ther. 2017;40(8):580-586.
    [19]Coombs DJ, Rullkoetter PJ, Laz PJ. Efficient probabilistic finite element analysis of a lumbar motion segment. J Biomech.2017;61:65-74.
    [20]Rho JY, Hobatho MC, Ashman RB. Relations of mechanical properties to density and CT numbers in human bone. Med Eng Phys. 1995;17(5):347-355.
    [21]Kopperdahl DL, Morgan EF, Keaveny TM. Quantitative computed tomography estimates of the mechanical properties of human vertebral trabecular bone. J Orthop Res. 2002;20(4):801-805.
    [22]Pyles C, Zhang J, Demetropoulos C, et al. Material Parameter Determination of an L4-L5 Motion Segment Finite Element Model Under High Loading Rates. Biomed Sci Instrum. 2015;51:206-213.
    [23]Yang K, King A. Mechanism of facet load transmission as a hypothesis for low-back pain. Spine. 1984;9(6):557-565.
    [24]Guo L, Fan W. Impact of material properties of intervertebral disc on dynamic response of the human lumbar spine to vertical vibration:a finite element sensitivity study. Med Biol Eng Comput.2018.
    [25]Leite PMS, Mendonca ARC, Maciel LYS, et al. Does Electroacupuncture Treatment Reduce Pain and Change Quantitative Sensory Testing Responses in Patients with Chronic Nonspecific Low Back Pain? A Randomized Controlled Clinical Trial. Evid Based Complement Alternat Med. 2018;2018:8586746.
    [26]Li J, He J, Li H, et al. Proportion of neuropathic pain in the back region in chronic low back pain patients-a multicenter investigation. Sci Rep. 2018;8(1):16537.
    [27]Welch N, Moran K, Antony J, et al. The effects of a free-weight-based resistance training intervention on pain, squat biomechanics and MRI-defined lumbar fat infiltration and functional cross-sectional area in those with chronic low back.BMJ Open Sport Exerc Med. 2015;1(1):e000050.
    [28]Thiry P, Reumont F, Brismee JM, et al. Short-term increase in discs'apparent diffusion is associated with pain and mobility improvements after spinal mobilization for low back pain. Sci Rep.2018;8(1):8281.
    [29]Fongen C, Dagfinrud H, Berg IJ, et al. Frequency of Impaired Spinal Mobility in Patients with Chronic Back Pain Compared to Patients with Early Axial Spondyloarthritis. J Rheumatol. 2018.
    [30]Wagnac E, Aubin C, Chaumo?tre K, et al. Substantial vertebral body osteophytes protect against severe vertebral fractures in compression. PLoS ONE. 2017;12(10):e0186779.
    [31]Lee C, Landham P, Eastell R, et al. Development and validation of a subject-specific finite element model of the functional spinal unit to predict vertebral strength. Proc Inst Mech Eng H. 2017;231(9):821-830.
    [32]Fan W, Guo L. Finite element investigation of the effect of nucleus removal on vibration characteristics of the lumbar spine under a compressive follower preload. J Mech Behav Biomed Mater.2017;78:342-351.
    [33]Paietta R, Burger E, Ferguson V. Mineralization and collagen orientation throughout aging at the vertebral endplate in the human lumbar spine. J Struct Biol. 2013;184(2):310-320.
    [34]Berg-Johansen B, Fields A, Liebenberg E, et al. Structure-function relationships at the human spinal disc-vertebra interface. J Orthop Res. 2017.
    [35]Lee C, Hsu C, Huang P. Biomechanical study of different fixation techniques for the treatment of sacroiliac joint injuries using finite element analyses and biomechanical tests. Comput Biol Med.2017;87:250-257.
    [36]Wang K, Jiang C, Wang L, et al. The biomechanical influence of anterior vertebral body osteophytes on the lumbar spine:a finite element study. Spine J. 2018.
    [37]Wang Y, Yi X, Li C. The influence of artificial nucleus pulposus replacement on stress distribution in the cartilaginous endplate in a 3-dimensional finite element model of the lumbar intervertebral disc. Medicine(Baltimore). 2017;96(50):e9149.
    [38]Barthelemy VM, van Rijsbergen MM, Wilson W, et al. A computational spinal motion segment model incorporating a matrix composition-based model of the intervertebral disc. J Mech Behav Biomed Mater. 2016;54:194-204.
    [39]Ghezelbash F, Eskandari AH, Shirazi-Adl A, et al. Effects of motion segment simulation and joint positioning on spinal loads in trunk musculoskeletal models. J Biomech. 2018;70:149-156.
    [40]Chik TK, Chooi WH, Li YY, et al. Bioengineering a multicomponent spinal motion segment construct--a 3D model for complex tissue engineering. Adv Healthc Mater. 2015;4(1):99-112.
    [41]Nagata K, Ando T, Nakamoto H, et al. Adaptation and limitation of anterior column reconstruction for pyogenic spondylitis in lower thoracic and lumbar spine. J Orthop Sci. 2018.
    [42]Uribe JS, Schwab F, Mundis GM, Jr., et al. The comprehensive anatomical spinal osteotomy and anterior column realignment classification. J Neurosurg Spine. 2018:1-11.
    [43]von Ruden C, Wenzel L, Becker J, et al. The pararectus approach for internal fixation of acetabular fractures involving the anterior column:evaluating the functional outcome. Int Orthop. 2018.
    [44]Khurana B, Prevedello LM, Bono CM, et al. CT for thoracic and lumbar spine fractures:Can CT findings accurately predict posterior ligament complex injury? Eur Spine J. 2018.
    [45]Mc AP, Cunningham B, Mullinex K, et al. Middle-Column Gap Balancing and Middle-Column Mismatch in Spinal Reconstructive Surgery. Int J Spine Surg. 2018;12(2):160-171.
    [46]McAfee PC, Eiserman L, Cunningham BW, et al. Middle Column Gap Balancing to Predict Optimal Anterior Structural Support and Spinal Height in Spinal Reconstructive Surgery. Spine(Phila Pa1976). 2017;42 Suppl 7:S19-S20.
    [47]Sugaya T, Sakamoto M, Nakazawa R, et al. Relationship between spinal range of motion and trunk muscle activity during trunk rotation. J Phys Ther Sci. 2016;28(2):589-595.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700