用户名: 密码: 验证码:
微生物菌肥对干旱矿区土壤的改良效果
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Microbial Fertilizer on Soil Amelioration in Arid Mining Area
  • 作者:毛骁 ; 孙保平 ; 张建锋 ; 武毅 ; 李文烨
  • 英文作者:MAO Xiao;SUN Baoping;ZHANG Jianfeng;WU Yi;LI Wenye;College of Soil and Water Conservation, Beijing Forestry University;
  • 关键词:土壤改良 ; 微生物菌肥 ; 干旱矿区 ; 因子分析 ; 聚类分析
  • 英文关键词:soil amelioration;;microbial fertilizer;;arid mining area;;factor analysis;;cluster analysis
  • 中文刊名:TRQS
  • 英文刊名:Journal of Soil and Water Conservation
  • 机构:北京林业大学水土保持学院;
  • 出版日期:2019-04-15
  • 出版单位:水土保持学报
  • 年:2019
  • 期:v.33;No.161
  • 基金:内蒙古自治区科技计划项目(201601050);; 台湾塑胶工业有限公司项目(2014HXFWSBXY025)
  • 语种:中文;
  • 页:TRQS201902032
  • 页数:6
  • CN:02
  • ISSN:61-1362/TV
  • 分类号:203-208
摘要
为了提高干旱矿区土壤肥力,丰富植被重建及生态修复理论,通过盆栽试验,种植紫花苜蓿、披碱草和冰草3种干旱矿区常见草本植物,并结合施用不同浓度的微生物菌肥处理,利用双因素方差分析揭示施肥水平和植物种类对土壤生物及理化性质的影响,采用因子分析和聚类分析进行综合评价,以筛选土壤改良效果的最佳组合。结果表明:(1)试验组较对照组土壤中细菌、真菌、放线菌、微生物总数量、微生物量碳、氮、有机质和速效氮磷钾均显著增加(p<0.05),而微生物量碳氮比和pH显著减小(p<0.05)。(2)施肥水平和植物种类对细菌、真菌、放线菌、微生物总量、微生物量氮和碳氮比有显著交互作用。(3)因子分析和聚类分析的结果基本一致,土壤改良效果最佳的为种植紫花苜蓿并施入20 g/kg的微生物菌肥;施用微生物菌肥能有效改良水肥贫瘠的干旱矿区土壤,随着微生物菌肥施用量的增加,土壤的改良效果逐步提升。
        In order to improve the soil fertility in arid mining area and enrich the theory of vegetation reconstruction and ecological restoration, through the potted experiment, three common herbaceous species(Medicago sativa, Elymus dahuricus Turcz and Agropyron cristatum) in dry ore fields were planted. Combined with different concentrations of microbial fertilizer treatments, two-factor variance analysis was used to reveal the effects of fertilization levels and plant species on soil biological, physical and chemical properties, and cluster and factor analysis were used to screen the best combination of plant species and fertilization level in soil improvement. The results showed that:(1) Compared with the control group, the soil bacteria, fungi, actinomycetes, total microbial quantity, microbial biomass carbon, nitrogen, organic matter, available nitrogen, phosphorus and potassium in the test group increased significantly(p<0.05), while the microbial biomass carbon-to-nitrogen ratio and pH decreased significantly(p<0.05).(2) Plant types and fertilization levels had significant interactions on some indicators, including bacterial quantity, fungi quantity, actinomyces quantity, total microbial quantity, microbial biomass nitrogen, the microbial biomass carbon-to-nitrogen ratio.(3) The results of factor analysis and cluster analysis were basically consistent. The best treatment for soil improvement in the arid mining area was planting M. sativa and applying 20 g/kg microbial fertilizer. The application of microbial fertilizer could effectively improve soils that was poor in moisture fertility in dry mining area. With the increasing of microbial fertilizer application amount, the effect of soil improvement was better.
引文
[1] 宋双双,孙保平,张建锋.保水剂和微生物菌肥对半干旱区造林和土壤改良的影响[J].水土保持学报,2018,32(3):334-339.
    [2] 彭飞,黄敦元,余江帆,等.生物菌肥对于油茶的应用前景以及施用条件和方法初探[J].江西林业科技,2013,40(1):39-42.
    [3] Uysal O, Uysal F O, Ekinci K. Evaluation of microalgae as microbial fertilizer[J].European Journal of Sustainable Development,2015,4(2):77-82.
    [4] 李旭霖,刘庆花,柳新伟,等.不同改良剂对滨海盐碱地的改良效果[J].水土保持通报,2015,35(2):219-224.
    [5] 孙庆先,胡振琪.中国矿业的环境影响及可持续发展[J].中国矿业,2003,12(7):24-27.
    [6] 彭建,蒋一军,吴健生,等.我国矿山开采的生态环境效应及土地复垦典型技术[J].地理科学进展,2005,24(2):38-48.
    [7] 许景钢,孙涛,李嵩.我国微生物肥料的研发及其在农业生产中的应用[J].作物杂志,2016,31(1):1-6.
    [8] 侯睿,张小红,张小军,等.生物菌肥在花生上施用效果的研究[J].中国农学通报,2017,33(8):78-83.
    [9] 辛督强,韩国秀.因子分析法在科技期刊综合评价中的应用[J].数理统计与管理,2014,33(1):116-121.
    [10] Cheng Y Q, Song Q W, Ma H M. Research on optimization of water quality monitoring sites using principal component analysis and cluster analysis[C].Computer Distributed Control and Intelligent Environmental Monitoring,2011:570-573.
    [11] Niu C C, Wang Q, Chen H I, et al. Application of principal component analysis and cluster analysis to evaluation of black soil degradation in Jilin[C].Multimedia Technology,2011:1467-1470.
    [12] 李振高.土壤与环境微生物研究法[M].北京:科学出版社,2008.
    [13] 林启美,吴玉光,刘焕龙.熏蒸法测定土壤微生物量碳的改进[J].生态学杂志,1999,18(2):63-66.
    [14] 成斌斌.土壤pH的测定[J].化学教与学,2014(4):95-97.
    [15] 中科院南京土壤研究所.土壤理化分析[M].上海:上海科学技术出版社,1978:20-210.
    [16] 孙兰香.乙酸铵浸提:火焰光度计法测定土壤速效钾[J].现代农业科技,2008,34(17):199.
    [17] 周智彬,李培军.塔克拉玛干沙漠腹地人工绿地土壤中微生物的生态分布及其与土壤因子间的关系[J].应用生态学报,2003,14(8):1246-1250.
    [18] Yan D Z, Wang D J, Yang L Z. Long-term effect of chemical fertilizer, straw, and manure on labile organic matter fractions in a paddy soil[J].Biology and Fertility of Soils,2007,44(1):93-101.
    [19] 卢建男,张琼,刘铁军,等.不同改良剂对盐碱地土壤及草地早熟禾生长的影响[J].草业科学,2017,34(6):1141-1148.
    [20] Sardans J, Peuelas J. Plant-soil interactions in Mediterranean forest and shrublands: Impacts of climatic change[J].Plant and Soil,2013,365(1/2):1-33.
    [21] 许剑敏.生物菌肥对矿区复垦土壤磷、有机质、微生物数量的影响[J].山西农业科学,2011,39(3):250-252.
    [22] 宋家清,郑秀社,张庆国,等.活性微生物菌肥对滨海盐碱土改良的影响[J].北方园艺,2010,33(18):53-55.
    [23] 贾倩民,陈彦云,杨阳,等.不同人工草地对干旱区弃耕地土壤理化性质及微生物数量的影响[J].水土保持学报,2014,28(1): 178-182.
    [24] 吴江利,罗学刚,李宝强,等.生物菌肥作用下荒漠土壤微生物群落结构和功能研究[J].中国农学通报,2015,31(9):216-223.
    [25] 元炳成.紫花苜蓿改良盐渍土对土壤微生物活性和养分含量的影响[J].生态环境学报,2011,20(3):415-419.
    [26] 王素英,陶光灿,谢光辉,等.我国微生物肥料的应用研究进展[J].中国农业大学学报,2003,8(1):14-18.
    [27] 姚衍芳,王新亮.微生物肥料在盐碱地改良中的应用[J].林业科技通讯,2016,58(9):15-17.
    [28] 唐海龙,龚伟,王景燕,等.川东丘陵区青花椒种植对土壤肥力的影响[J].长江流域资源与环境,2017,26(10):1597-1606.
    [29] 赵彤,闫浩,蒋跃利,等.黄土丘陵区植被类型对土壤微生物量碳氮磷的影响[J].生态学报,2013,33(18):5615-5622.
    [30] 赵可夫,范海,江行玉,等.盐生植物在盐渍土壤改良中的作用[J].应用与环境生物学报,2002,8(1):31-35.
    [31] 张萌萌,敖红,张景云,等.植年限对紫花苜蓿根际土壤微生物群落功能多样性的影响[J].草业科学,2014,31(5):787-796.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700