用户名: 密码: 验证码:
随机时延下无角速度测量的无人机姿态同步
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Attitude synchronization of UAV without angular velocity measurement with random delay
  • 作者:乔滟 ; 樊春霞
  • 英文作者:QIAO Yan;FAN Chunxia;School of Automation,Nanjing University of Posts and Telecommunications;
  • 关键词:姿态同步 ; 随机时延 ; 无角速度测量 ; 虚拟系统
  • 英文关键词:attitude synchronization;;random delay;;without angular velocity measurement;;virtual system
  • 中文刊名:NJYD
  • 英文刊名:Journal of Nanjing University of Posts and Telecommunications(Natural Science Edition)
  • 机构:南京邮电大学自动化学院;
  • 出版日期:2019-03-11 10:44
  • 出版单位:南京邮电大学学报(自然科学版)
  • 年:2019
  • 期:v.39;No.180
  • 基金:国家自然科学基金(61374180)资助项目
  • 语种:中文;
  • 页:NJYD201901021
  • 页数:9
  • CN:01
  • ISSN:32-1772/TN
  • 分类号:106-114
摘要
文中考虑信息传输时延随机发生的情况,采用Bernoulli随机分布描述时延的随机发生,提出了无角速度测量下无人机的姿态同步设计方案。考虑不用角速度作为反馈量,使用基于虚拟系统的方法进行处理,为群中每个无人机设计一个虚拟系统,为各个无人机生成一个中间姿态参考轨迹,将无人机与之相关联,设计控制输入,使得各个无人机跟踪其相应的虚拟系统,同时所有虚拟系统同步它们的姿态。在固定且无向的通信拓扑下,仿真结果显示在不同时延概率下实现了无人机在无角速度测量下的无主式和主从式姿态同步。
        The attitude synchronization scheme for unmanned aerial vehicle(UAV) without angular velocity measurement is proposed when the information transmitted between UAVs is randomly delayed by using Bernoulli random distribution to describe the random occurrence of delays.A virtual system-based approach is used to realize attitude synchronization of UAVs because the angular velocity is not used as the feedback amount.A virtual system is designed for each UAV and generates an intermediate attitude reference trajectory for each UAV in the group.The UAV is associated with a virtual system and the control inputs are made so that each UAV tracks its corresponding virtual system,while all virtual systems synchronize their attitudes.In a fixed and undirected communication topology,simulation results show that UAVs can achieve the leaderless and leader-follower attitude synchronization on the different delay probabilities without angular velocity measurement.
引文
[1] ZHU X,ZHANG X,QU Y.Consensus-based three-dimensionalmulti-UAV formation control strategy with high precision[J].Frontiers of Information Technology & Electronic Engineering,2017,18(7):968-977.
    [2] WENG S,YUE D.Distributed event-triggered cooperative attitude control of multiple rigid bodies with leader-follower architecture[J].International Journal of Systems Science,2016,47(3):631-643.
    [3] REN W.Distributed attitude alignment in spacecraft formation flying[J].International Journal of Adaptive Control and Signal Processing,2007,21(2/3):95-113.
    [4] GEBRE-EGZIABHER D,ELKAIM G H,POWELL J D,et al.A gyro-free quaternion-based attitude determination system suitable for implementation using low cost sensors[C]∥IEEE Position Location and Navigation Symposium.2000:185-192.
    [5] MEHRABIAN A,KHORASANI K.Distributed and cooperative quaternion-based attitude synchronization and tracking control for a network of heterogeneous spacecraft formation flying mission[J].Journal of the Franklin Institute,2015,352(9):3885-3913.
    [6] THUNBERG J,SONG W,MONTIJANO E,et al.Distributed attitude synchronization control of multi-agent systems with switching topologies[J].Automatica,2014,50(3):832-840.
    [7] ZOU A M.Distributed attitude synchronization and tracking control for multiple rigid bodies[J].IEEE Transactions on Control Systems Technology,2014,22(2):478-490.
    [8] LIZARRALDE F,WEN J T.Attitude control without angular velocity measurement:a passivity approach[J].IEEE Transactions on Automatic Control,2002,41(3):468-472.
    [9] PENG C,ZHU B,YIN L,et al.Attitude synchronization of multiple 3-DOF helicopters without angular velocity measurements by bounded distributed control[C]//IEEE Control Conference.2015:7196-7201.
    [10] BONDHUS A K,PETTERSEN K Y,GRAVDAHL J T.Leader/follower synchronization of satellite attitude without angular velocity measurements[C]//IEEE European Control Conference on Decision and Control.2005:7270-7277.
    [11] GUI H,VUKOVICH G.Finite-time angular velocity observers for rigid-body attitude tracking with bounded inputs[J].International Journal of Robust & Nonlinear Control,2017,27(1):15-38.
    [12] ABDESSAMEUD A,TAYEBI A.Motion coordination for VTOL unmanned aerial vehicles:attitude synchronisation and formation control[M].New York:Springer Science & Business Media,2013.
    [13] MAZENC F,AKELLA M R.Quaternion-based stabilization of attitude dynamics subject to pointwise delay in the input[C]∥IEEE American Control Conference.2014:1-9.
    [14] ABDESSAMEUD A,TAYEBI A,POLUSHIN I G.Rigid body attitude synchronization with communication delays[C]//IEEE American Control Conference.2012:3736-3741.
    [15] DU H,LI S.Attitude synchronization for flexible spacecraft with communication delays[J].IEEE Transactions on Automatic Control,2016,61(11):3625-3630.
    [16] ABDESSAMEUD A,TAYEBI A,POLUSHIN I G.Attitude synchronization of multiple rigid bodies with communication delays[J].IEEE Transactions on Automatic Control,2012,57(9):2405-2411.
    [17] 马龙,王仕成,闵海波,等.通信时延和联合连通拓扑下多刚体系统分布式姿态一致性控制[J].控制理论与应用,2016,33(9):1162-1170.MA Long,WANG Shicheng,MIN Haibo,et al.Distributed attitude consensus for multiple rigid body systems with communication delay and jointly connected topologies[J].Control Theory & Applications,2016,33(9):1162-1170.(in Chinese)
    [18] ZHU Z,GUO Y,ZHONG C.Distributed attitude coordination tracking control for spacecraft formation with time-varying delays[J].IEEE Transactions on the Institute of Measurement & Control,2018,40(6):2082-2087.
    [19] NILSSON J,BO B,WITTENMARK B.Stochastic analysis and control of real-time systems with random time delays[C]//World Congress of IFAC.1996.
    [20] SRINIVASAGUPTA D,SCH?TTLER H,JOSEPH B.Time-stamped model predictive control:an algorithm for control of processes with random delays[J].Computers & Chemical Engineering,2004,28(8):1337-1346.
    [21] ALSAAIDAH A,ZALISHAM M,FADZLI M,et al.Markov-modulated bernoulli-based performance analysis for gentle BLUE and BLUE algorithms under bursty and correlated traffic[J].Journal of Computer Science,2016,12(6):289-299.
    [22] YU S,LI J,TANG Y.Dynamic output feedback control for nonlinear networked control systems with random packet dropout and random delay[J].Mathematical Problems in Engineering,2013(2):1-9.
    [23] WANG Y F,LI Z X,CHEN H Y,et al.Output feedback for networked control systems with time-delay and data packet dropout[C]//Proceedings of the Chinese Intelligent Automation Conference.2015:310-313.
    [24] SHI F F,HUANG L,HAN J W,et al.Delay compensation for network control systems with data-dropout[J].Journal of Harbin University of Science & Technology,2017(3):36-41.
    [25] ZHI Yueming,JIANG Shun,PAN Feng,et al.Non-fragile H_∞ fault-tolerant control of nonlinear networked control system[J].Control Engineering of China,2016,23(7):1110-1114.
    [26] FAN C,WANG C.Fault tolerant synchronization of a general complex network with random delay against network coupling faults[C]//IEEE International Conference on Information and Automation.2016:1682-1686.
    [27] ZHANG H,WANG J,WANG Z,et al.Mode-dependent stochastic synchronization for Markovian coupled neural networks with time-varying mode-delays[J].IEEE Transactions on Neural Networks and Learning Systems,2015,26(11):2621-2634.
    [28] WANG Y,YU C B.Translation and attitude synchronization for multiple rigid bodies using dual quaternions[J].Journal of the Franklin Institute,2017,354(8):3594-3616.
    [29] CAI H,HUANG J.Leader-following attitude consensus of multiple rigid body systems by attitude feedback control[J].Automatica,2016,69:87-92.
    [30] KHALIL H.Nonlinear Systems[M].3rd.Upper Saddle River:Prentice Hall,2002.
    [31] IOANNOU P A,SUN J.Robust Adaptive Control[M].Upper Saddle River:Prentice Hall,1996.
    [32] GU K,CHEN J,KHARITONOV V L.Stability of Time-Delay Systems[M].New York:Springer Science & Business Media,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700