用户名: 密码: 验证码:
综合物探技术在方解石隧洞段涌水预报中的应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Application of comprehensive geophysical prospecting technology in prediction of water burst in a calcite tunnel
  • 作者:李俊杰 ; 张红纲 ; 何建设 ; 朱红雷 ; 郭佳豪
  • 英文作者:LI Jun-jie;ZHANG Hong-gang;HE Jian-she;ZHU Hong-lei;GUO Jia-hao;Zhejiang Design Institute of Water Conservancy and Hydroelectric Power;
  • 关键词:隧道地震波预报(TSP) ; 地质雷达 ; 千岛湖配水工程 ; 含水构造 ; 超前探测
  • 英文关键词:Tunnel Seismic Prediction(TSP);;Ground penetrating radar;;Thousand Island Lake water transfer project;;Water-bearing structures;;Advanced detection
  • 中文刊名:DQWJ
  • 英文刊名:Progress in Geophysics
  • 机构:浙江省水利水电勘测设计院;
  • 出版日期:2018-10-24 14:28
  • 出版单位:地球物理学进展
  • 年:2019
  • 期:v.34;No.154
  • 基金:国家自然科学基金项目(41641040);; 浙江省水利厅科技项目(RC1729)联合资助
  • 语种:中文;
  • 页:DQWJ201902042
  • 页数:8
  • CN:02
  • ISSN:11-2982/P
  • 分类号:327-334
摘要
掌子面前方富水构造是隧洞安全施工的重大隐患,盲目掘进易造成岩体大面积涌渗水,威胁生命财产安全,影响施工进度.将地质雷达与TSP303用于千岛湖配水工程隧洞含水构造超前探测,简述了隧洞地震反射波法探测原理及隧道地震波预报(TSP)观测系统布设方式,模拟了电磁波在含水构造中的传播特性,分析了影响TSP数据采集及处理质量的关键因素,统计了千岛湖引水线路不同质量级别下常见岩性的TSP物理力学指标分布区间,综合物探成果准确反映了掌子面前方不良地质的性质及规模,为后续隧洞施工提供了重要指导.结论如下:炮孔角度向下倾斜以改善炸药的水封效果是提高TSP数据信噪比的关键,反射波拾取过程中最大增益与Q值对TSP预报结果影响大,建议两者在15~25区间取值;相同质量级别下安山岩对应TSP物理力学指标最高,灰岩次之,但较凝灰岩、熔结凝灰岩略高,砂泥质岩最差;含水破碎带与充水方解石结晶洞均对应强振幅、低主频(多大于50 MHz)的电磁异常特性,但前者同相轴错断,后者呈双曲线状,含水构造在TSP成果中表现为视波速、密度及各力学模量值偏低,泊松比偏高.
        The water-bearing structure which locates in front of the tunnel face is a significant safety hazard in tunnel safety construction, blind rock excavation may be causing water gushing in large area of rock mass which threatens the life and property safety and affect the construction schedule. We use ground penetrating radar and TSP303 to the detection of water-bearing structures in tunnels of Thousand Island Lake-Hangzhou water transfer project. Then we give a brief description of the detection principle of seismic reflection wave method and the observation system of TSP(Tunnel Seismic Prediction).Thirdly,we simulate the propagation characteristics of electromagnetic wave in water-bearing structures and analyze the key factors which influencing the prediction accuracy of TSP. Lastly, we calculate the range value of physical and mechanical indexes of TSP in different classification of rock mass basic quality in the routes of Thousand Island Lake water transfer project. Comprehensive geophysical results accurately reflect the property and scale of unfavorable geology in front of tunnel face which provide an important guidance for the subsequent tunnel construction. Several conclusions are drawn as follow. Firstly, the shot hole which designs slanting downward for improving the water seal effect of explosive is the key to improve the signal to noise ratio of TSP data. Secondly, the maximum gain and Q value in the reflection wave pickup process have great influence on the results of the TSP prediction, both of them are suggested taking the value in the 15~25 interval. Thirdly, in the same quality level, andesite corresponds to the highest physical and mechanical index of TSP, and the limestone is second, but it is slightly higher than that of tuff and melted tuff, the sandstone and mudstone is worst. Fourthly, water-bearing fracture zone and water-filled calcite crystalline cavity both correspond to the electromagnetic anomaly characteristics of strong amplitude and low main frequency(more than 50 MHz), the event for the former is broken but the latter is hyperbolic. Water-bearing structures in the TSP results show the fact that the values of wave velocity, density and mechanical modulus are lower, but Poisson's ratio is higher.
引文
Alimoradi A, Moradzadeh A, Naderi R, et al. 2008. Prediction of geological hazardous zones in front of a tunnel face using TSP-203 and artificial neural networks [J]. Tunnelling and underground space technology, 23(6): 711-717.
    Fu D G, Zhou L M, Xiao G Q, et al. 2016. Forecast defective geological bodies in tunnel by TSP [J]. Progress in geophysics(in Chinese), 31(1): 417- 426, DOI: 10.6038/pg20160149.
    Irving J, Knight R. 2006. Numerical modeling of ground-penetrating radar in 2-D using MATLAB [J]. Computers & Geosciences, 32(9): 1247-1258.
    Li J J, Zhu H L, Zhao G J, et al. 2018. Electromagnetic interference analysis of ground penetrating radar and its application in karst detection in tunnel [J]. Carsologica Sinica(in Chinese), 37(2): 286-293.
    Li S C, Liu B, Sun H F, et al. 2014. State of art and trends of advanced geological prediction in tunnel construction [J]. Chinese Journal of Rock Mechanics and Engineering(in Chinese), 33(6): 1090-1113.
    Lin Y, Liu Z P, Wang Z L, et al. 2015. Numerical simulation of TSP fault model[J]. Journal of Jilin University(Earth Science Edition)(in Chinese), 45(6): 1870-1878.
    Liu B, Li S C, Zhang Q S, et al. 2009. Study of the prediction of karst-fractured groundwater in prediction and early warning system of tunnel geologic hazards [J]. Journal of Shandong University(Engineering Science)(in Chinese), 39(3): 115-121.
    Liu G, Li Z J, Shen W D. 2011. Integrated Advance Geologic Prediction Applied in Changleshan Tunnel [J]. Modern Tunnelling Technology(in Chinese), 48(1): 123-127.
    Liu R T, Li S C, Zhang Q S, et al. 2011. Research on optimization of karst fissure water exploration methods and engineering countermeasures [J]. Rock and Soil Mechanics(in Chinese), 32(4): 1095-1100.
    Liu X R, Liu Y Q, Yang Z P, et al. 2015. Synthetic advanced geological prediction technology for tunnels based on GPR [J]. Chinese Journal of Geotechnical Engineering(in Chinese), 37(S2): 51-56.
    Liu Y F, Li T B, Meng L B, et al. 2016. Methods to improve TSP forecast accuracy and to data rapid analysis [J]. Hydrogeology and Engineering Geology(in Chinese), 43(2): 159-166.
    Qiu D H, Li S C, Zhang L W, et al. 2015. Rockburst prediction based on tunnel geological exploration and ground stress field inverse analysis [J]. Rock and Soil Mechanics(in Chinese), 36(7): 2034-2040.
    Su L H, Li N, Lü G, et al. 2015. Dielectric constant of gravel-soil mixture and FDTD forward analysis of weak zone in tunnels [J]. Chinese Journal of Rock Mechanics and Engineering(in Chinese), 34(6): 1172-1178.
    Su M X, Qian Q H, Li S C, et al. 2011. A method of metro advanced geological prediction under karst geology condiction [J]. Chinese Journal of Rock Mechanics and Engineering(in Chinese), 30(7): 1428-1434.
    Wang S D. 2013. Problems with and Improvements to the TSP System for Advance Geological Forecasting in Tunnels [J]. Modern Tunnelling Technology(in Chinese), 50(3): 129-135.
    Wang Z L, Yang Q, Chen Z, et al. 2016. Numerical simulation of TSP tunnel cave model of seismic prediction [J], Journal of Geodesy and Geodynamics(in Chinese), 36(11): 998-1002.
    Xu L, Zhang J Q, Qi Z F. 2018. Comparison research on comprehensive advanced geological prediction of hydraulic tunnels [J]. Progress in Geophysics(in Chinese),33(1):411- 417,doi:10.6038/pg2018 AA0574.
    Yang Z Z, liu D W, Chu F J, et al. 2014. Simulated study of GPR signal character in rock with water-bearing fissure [J]. Journal of Wuhan University of Technology(in Chinese), 36(11): 103-108.
    Zhang Y, Yang J, Zhou L M, et al. 2018. Common interference and the prediction of rock fissure water and weak interlayer in tunnel construction using TSP [J]. Progress in geophysics(in Chinese), 33(2): 892-899, doi: 10.6038/pg2018 BB0121.
    Zhang Y, Zhou L M, Xiao G Q. 2017. GPR forward simulation for advance tunnel forecast based on GprMax and its application [J]. Yangtze River(in Chinese), 48(7): 50-55.
    Zhou L, Li S C, Xu Z H, et al. 2017. Integrated advanced geological prediction technology of tunnel and its engineering application [J]. Journal of Shandong University(Engineering Science)(in Chinese), 47(2): 55- 62.
    Zhou Z Q, Li S C, Li L P, et al. 2017. Classification method of rock mass quality and its engineering application [J]. Journal of Central South University(Science and Technology)(in Chinese), 48(4): 1049-1056.
    付代光, 周黎明, 肖国强, 等. 2016. TSP预报隧道不良地质体应用研究[J]. 地球物理学进展, 31(1): 417- 426, DOI: 10.6038/pg20160149.
    李俊杰, 朱红雷, 赵国军,等. 2018. 地质雷达电磁干扰分析及在隧洞岩溶探测中的应用[J]. 中国岩溶, 37(2): 286-293.
    李术才, 刘斌, 孙怀凤, 等. 2014. 隧道施工超前地质预报研究现状及发展趋势[J]. 岩石力学与工程学报, 33(6): 1090-1113.
    林义, 刘争平, 王朝令, 等. 2015. TSP断层模型数值模拟[J]. 吉林大学学报(地球科学版), 45(6): 1870-1878.
    刘斌, 李术才, 张庆松, 等. 2009. 隧道地质灾害预警体系中岩溶裂隙水综合预报技术研究[J]. 山东大学学报(工学版), 39(3): 115-121.
    刘国, 李焯均, 沈卫东. 2011. 综合超前地质预报在长乐山隧道施工中的应用[J]. 现代隧道技术, 48(1): 123-127.
    刘人太, 李术才, 张庆松, 等. 2011. 岩溶裂隙水探查方法优化与工程治理研究[J]. 岩土力学, 32(4): 1095-1100.
    刘新荣, 刘永权, 杨忠平, 等. 2015. 基于地质雷达的隧道综合超前预报技术[J]. 岩土工程学报, 37(S2): 51-56.
    刘阳飞, 李天斌, 孟陆波, 等. 2016. 提高TSP预报准确率及资料快速分析方法研究[J]. 水文地质工程地质, 43(2): 159-166.
    邱道宏, 李术才, 张乐文, 等. 2015. 基于隧洞超前地质探测和地应力场反演的岩爆预测研究[J]. 岩土力学, 36(7): 2034-2040.
    苏立海, 李宁, 吕高, 等. 2015. 碎石泥土混合体介电常数研究及隧洞软弱带FDTD正演[J]. 岩石力学与工程学报, 34(6): 1172-1178.
    苏茂鑫, 钱七虎, 李术才, 等. 2011. 一种岩溶地质条件下的城市地铁超前预报方法[J]. 岩石力学与工程学报, 30(7): 1428-1434.
    王树栋. 2013. TSP系统在隧道超前地质预报中的问题及其改善处理[J]. 现代隧道技术, 50(3): 129-135.
    王朝令, 杨茜, 陈章, 等. 2016. TSP隧道地震预报空洞模型的数值模拟研究[J]. 大地测量与地球动力学, 36(11): 998-1002.
    徐磊, 张建清, 漆祖芳. 2018. 水工隧洞综合超前地质预报应用对比研究[J]. 地球物理学进展, 33(1): 411- 417, doi: 10.6038/pg2018AA0574.
    杨忠治, 刘敦文, 褚夫蛟, 等. 2014. 富水裂隙岩体探地雷达信号特性模拟研究[J]. 武汉理工大学学报, 36(11): 103-108.
    张杨, 杨君, 周黎明, 等. 2018. TSP在隧道工程施工中的常见干扰和对岩体裂隙水及软弱夹层等的预报研究[J]. 地球物理学进展, 33(2): 892-899, doi: 10.6038/pg2018 BB0121.
    张杨, 周黎明, 肖国强. 2017. 基于GprMax的隧道超前预报雷达正演模拟及应用[J]. 人民长江, 48(7): 50-55.
    周轮, 李术才, 许振浩, 等. 2017. 隧道综合超前地质预报技术及其工程应用[J]. 山东大学学报(工学版), 47(2): 55- 62.
    周宗青, 李术才, 李利平, 等. 2017. 岩体质量等级分类预测方法及其工程应用[J]. 中南大学学报(自然科学版), 48(4): 1049-1056.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700