用户名: 密码: 验证码:
启迪于蝶翅分级精细结构的遗态功能材料
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Morpho-Genetic Materials Inspired from Butterfly Wing Scales
  • 作者:张旺 ; 顾佳俊 ; 苏慧兰 ; 张荻
  • 英文作者:ZHANG Wang;GU Jiajun;SU Huilan;ZHANG Di;State Key Laboratory of Metal Matrix Composites,Shanghai Jiao Tong University;
  • 关键词:遗态材料 ; 分级结构 ; 光功能材料 ; 仿生材料
  • 英文关键词:morpho-genetic material;;hierarchical structure;;optical function material;;biomimetic material
  • 中文刊名:XJKB
  • 英文刊名:Materials China
  • 机构:上海交通大学金属基复合材料国家重点实验室;
  • 出版日期:2015-09-08 09:17
  • 出版单位:中国材料进展
  • 年:2015
  • 期:v.34;No.405
  • 基金:上海市重点项目(14JC1403300);; 上海市科委国际合作项目(14520710100)
  • 语种:中文;
  • 页:XJKB201509003
  • 页数:10
  • CN:09
  • ISSN:61-1473/TG
  • 分类号:10-19
摘要
传统设计与制备技术手段往往难以实现预期精细结构与功能构筑,从而限制了材料结构-性能之间新现象的发现与新机理的建立。借用经亿万年自然优化的生物自身多层次、多维和多尺度的本征结构为模板,通过物理和化学手段,在保留生物精细分级结构的同时,置换生物模板的化学组分为所需功能组分,利用生物精细结构与人工组分之间的耦合关系,可制备既遗传自然生物精细形态,又有人为赋予特性的新材料——遗态材料。围绕具有蝶翅精细结构的遗态光功能材料,分别以金属-半导体功能蝶翅的红外吸收增强及光热转换、金属功能蝶翅的表面等离子体拉曼增强为例,介绍了遗态材料的设计思路、制备方法、性能表征及相关机理探索过程。相关思路与方法为解决分级精细结构难以制备的难题提供了新途径,并为新材料构型设计提供了前瞻性思路和原理验证。
        Traditional design and manufacture method is less likely to duplicate the expected elaborate structures and functions,which seriously hinders the discovery of new phenomenon and the establishment of new mechanism between structures and functions. The chemical constituents within the organism can be replaced with the desired functional constituents by using the multi-level,multi-dimensional and multi-scale intrinsic bio-structure as template,through physical and chemical process. This innovative material,which endows the desired function while maintains the original bio-structure at the same time,is named morpho-genetic material. This manuscript presents the design,manufacture,characterization and mechanism of optical function morpho-genetic material,illustrates by two typical examples: metal-semiconductor functional wings enhanced infrared absorption and photothermal conversion,metal wing surface enhanced Raman scattering. The research thought and synthesis method mentioned here offer a new solution for the synthesis of multi-level fine structure. Furthermore,it provides a foresight and theoretical support for proposal of the novel material.
引文
[1]Tal A,Chen Y S,Williams H E,et al.Fabrication and Characterization of Three-Dimensional Copper Metallodielectric Photonic Crystals[J].Optics Express,2007,15(26):18 283-18 293.
    [2]Aydin K,Ferry V E,Briggs R M,et al.Broadband PolarizationIndependent Resonant Light Absorption Using Ultrathin Plasmonic Super Absorbers[J].Nature Communications,2011,2:193-198.
    [3]Xiao S,Drachev V P,Kildishev A V,et al.Loss-Free and Active Optical Negative-Index Metamaterials[J].Nature,2010,466:735-738.
    [4]Ding F,Cui Y,Ge X,et al.Ultra-Broadband Microwave Metamaterial Absorber[J].Applied Physics Letters,2012,100:103 506.
    [5]Huang Y F,Chattopadhyay S,Jen Y J,et al.Improved Broadband and Quasi-omnidirectional Anti-reflection Properties with Biomimetic Silicon Nanostructures[J].Nature Nanotechnology,2007,2:770-774.
    [6]Duong B,Khurshid H,Gangopadhyay P,et al.Enhanced Magnetism in Highly Ordered Magnetite Nanoparticle-Filled Nanohole Arrays[J].Small,2014,10:2 840-2 848.
    [7]Mizuno K,Ishii J,Kishida H,et al.A Black Body Absorber from Vertically Aligned Single-Walled Carbon Nanotubes[J].Proceedings of the National Academy of Sciences,2009,106:6 044-6 047.
    [8]Kelzenberg M D,Boettcher S W,Petykiewicz J A,et al.Enhanced Absorption and Carrier Collection in Si Wire Arrays for Photovoltaic Applications[J].Nature Materials,2010,9:239-244.
    [9]Gu J,Zhang W,Su H,et al.Morphology Genetic Materials Templated from Natural Species[J].Advanced Materials,2015,27:464-478.
    [10]Tao P,Shang W,Song C,et al.Bioinspired Engineering of Thermal Materials[J].Advanced Materials,2015,27:428-463.
    [11]Yu K,Fan T,Lou S,et al.Biomimetic Optical Materials:Integration of Nature’s Design for Manipulation of Light[J].Progress in Materials Science,2013,58:825-873.
    [12]Liu K,Jiang L.Bio-inspired Design of Multiscale Structures for Function Integration[J].Nano Today,2011,6:155-175.
    [13]Zhang D,Zhang W,Gu J,et al.Inspiration from Butterfly and Moth Wing Scales:Characterization,Modeling,and Fabrication[J].Progress in Materials Science,2015,68:67-96.
    [14]Wegst U G,Bai H,Saiz E,et al.Bioinspired Structural Materials[J].Nature Materials,2014,14(5866):1 053-1 054.
    [15]Bhushan B.Biomimetics:Lessons from Nature-An Overview,Philosophical Transactions of the Royal Society A:Mathematical[J].Physical and Engineering Sciences,2009,367:1 445-1 486.
    [16]Zhang Wang(张旺).蝶翅分级结构功能氧化物的制备与耦合性能的探索研究[D].Shanghai:Shanghai Jiao Tong University(上海交通大学),2008.
    [17]Foottit R G,Adler P H.Insect Biodiversity:Science and Society[J].John Wiley&Sons,2009.
    [18]Potyrailo R A,Ghiradella H,Vertiatchikh A,et al.Morpho Butterfly Wing Scales Demonstrate Highly Selective Vapour Response[J].Nature Photonics,2007,1:123-128.
    [19]Zhang W,Tian J,Wang Y,et al.Single Porous Sn O2Microtubes Templated from Papilio Maacki Bristles:New Structure towards Superior Gas Sensing[J].Journal of Materials Chemistry A,2014,2:4 543-4 550.
    [20]Huang J,Wang X,Wang Z L.Controlled Replication of Butterfly Wings for Achieving Tunable Photonic Properties[J].Nano Letters,2006,6:2 325-2 331.
    [21]Zhang W,Zhang D,Fan T,et al.Novel Photoanode Structure Templated from Butterfly Wing Scales[J],Chemistry of Materials,2008,21:33-40.
    [22]Kolle M,Salgard Cunha P M,Scherer M R,et al.Mimicking the Colourful Wing Scale Structure of the Papilio Blumei Butterfly[J].Nature Nanotechnology,2010,5:511-515.
    [23]Pris A D,Utturkar Y,Surman C,et al.Towards High-Speed Imaging of Infrared Photons with Bio-inspired Nanoarchitectures[J].Nature Photonics,2012,6:195-200.
    [24]Chen J,Su H,Liu Y,et al.Efficient Photochemical Hydrogen Production under Visible-Light over Artificial Photosynthetic Systems[J].International Journal of Hydrogen Energy,2013,38:8639-8 647.
    [25]Tan Y,Gu J,Zang X,et al.Versatile Fabrication of Intact ThreeDimensional Metallic Butterfly Wing Scales with Hierarchical Submicrometer Structures[J].Angewandte Chemie,2011,123:8 457-8 461.
    [26]Tan Y,Gu J,Xu L,et al.High-Density Hotspots Engineered by Naturally Piled-Up Subwavelength Structures in Three-Dimensional Copper Butterfly Wing Scales for Surface-Enhanced Raman Scattering Detection[J].Advanced Functional Materials,2012,22:1578-1 585.
    [27]Yang Q,Zhu S,Peng W,et al.Bioinspired Fabrication of Hierarchically Structured,p H-Tunable Photonic Crystals with Unique Transition[J],ACS Nano,2013,7:4 911-4 918.
    [28]Peng W,Zhu S,Wang W,et al.3D Network Magnetophotonic Crystals Fabricated on Morpho Butterfly Wing Templates[J].Advanced Functional Materials,2012,22:2 072-2 080.
    [29]Zhao Q,Fan T,Ding J,et al.Super Black and Ultrathin Amorphous Carbon Film Inspired by Anti-reflection Architecture in Butterfly Wing[J].Carbon,2011,49:877-883.
    [30]Jin R,Cao Y,Mirkin CA,et al.Photoinduced Conversion of Silver Nanospheres to Nanoprisms[J].Science,2002,294:1 901-1 903.
    [31]Yin Y,Alivisatos A P.Colloidal Nanocrystal Synthesis and the Organic-Inorganic Interface[J].Nature,2005,437:664-670.
    [32]Piller H,Palik E.Handbook of Optical Constants of Solids[J],Part II:Critiques.Subpart,1985,2.
    [33]Hu L,Chen G.Analysis of Optical Absorption in Silicon Nanowire Arrays for Photovoltaic Applications[J].Nano Lett,2007,7:3249-3 252.
    [34]Tan Y,Gu J,Xu L,et al.High-Density Hotspots Engineered by Naturally Piled-up Subwavelength Structures in Three-Dimensional Copper Butterfly Wing Scales for Surface-Enhanced Raman Scattering Detection[J].Adv Funct Mater,2012,22:1 578-1 585.
    [35]Tan Y,Gu J,Zang X,et al.Versatile Fabrication of Intact ThreeDimensional Metallic Butterfly Wing Scales with Hierarchical Submicrometer Structures[J].Angew Chem Int Edit,2011,50:8307-8 311.
    [36]Jeon H C,Jeon T Y,Shim T S,et al.Direct Fabrication of Hexagonally Ordered Ridged Nanoarchitectures via Dual Interference Lithography for Efficient Sensing Applications[J].Small,2014,10:1 490-1 494.
    [37]Garrett N L,Vukusic P,Ogrin F,et al.Spectroscopy on the Wing:Naturally Inspired SERS Substrates for Biochemical Analysis[J].J Biophotonics,2009,2:157-166.
    [38]Stoddart P,Cadusch P,Boyce T,et al.Optical Properties of Chitin:Surface-Enhanced Raman Scattering Substrates Based on Antireflection Structures on Cicada Wings[J].Nanotechnology,2006,17:680.
    [39]Xu B B,Zhang Y L,Zhang W Y,et al.Silver-Coated Rose Petal:Green,Facile,Low-Cost and Sustainable Fabrication of a SERS Substrate with Unique Superhydrophobicity and High Efficiency[J].Adv Optical Mater,2013,1:56-60.
    [40]Kumar C S.Raman Spectroscopy for Nanomaterials Characterization[J].Springer Science&Business Media,2012.
    [41]Kostovski G,White D,Mitchell A,et al.Nanoimprinted Optical Fibres:Biotemplated Nanostructures for SERS Sensing[J].Biosens Bioelectron,2009,24:1 531-1 535.
    [42]Kostovski G,Chinnasamy U,Jayawardhana S,et al.Sub-15 nm Optical Fiber Nanoimprint Lithography:A Parallel,Self-aligned and Portable Approach[J].Adv Mater,2011,23:531-535.
    [43]Hessel C M,Pattani V P,Rasch M,et al.Copper Selenide Nanocrystals for Photothermal Therapy[J].Nano Lett,2011,11:2560-2 566.
    [44]Tian Q,Jiang F,Zou R,et al.Hydrophilic Cu9S5Nanocrystals:A Photothermal Agent with a 25.7%Heat Conversion Efficiency for Photothermal Ablation of Cancer Cells in Vivo[J].ACS Nano,2011,5:9 761-9 771.
    [45]Huang X,Tang S,Liu B,et al.Enhancing the Photothermal Stability of Plasmonic Metal Nanoplates by a Core-Shell Architecture[J].Advanced Materials,2011,23:3 420-3 425.
    [46]Teng X,Han W,Wang Q,et al.Hybrid Pt/Au Nanowires:Synthesis and Electronic Structure[J].J Phys Chem C,2008,112:14 696-14 701.
    [47]Carbone L,Cozzoli P D.Colloidal Heterostructured Nanocrystals:Synthesis and Growth Mechanisms[J].Nano Today,2010,5:449-493.
    [48]Mokari T,Aharoni A,Popov I,et al.Diffusion of Gold into In As Nanocrystals[J].Angewandte Chemie International Edition,2006,45:8 001-8 005.
    [49]Yang J,Elim H I,Zhang Q,et al.Rational Synthesis,Self-assembly,and Optical Properties of Pb S-Au Heterogeneous Nanostructures via Preferential Deposition[J].J Am Chem Soc,2006,128:11 921-11 926.
    [50]Zhang L,Blom D A,Wang H.Au-Cu2O Core-Shell Nanoparticles:A Hybrid Metal-Semiconductor Heteronanostructure with Geometrically Tunable Optical Properties[J].Chemistry of Materials,2011,23:4 587-4 598.
    [51]Lakshmanan S B,Zou X,Hossu M,et al.Local Field Enhanced Au/Cu S Nanocomposites as Efficient Photothermal Transducer Agents for Cancer Treatment[J].Journal of Biomedical Nanotechnology,2012,8:883-890.
    [52]Yang C,Ma L,Zou X,et al.Surface Plasmon-Enhanced Ag/Cu S Nanocomposites for Cancer Treatment[J].Cancer Nanotechnology,2013,4:81-89.
    [53]Kim S,Fisher B,Eisler H J,et al.Type-II Quantum Dots:Cd Te/Cd Se(Core/Shell)and Cd Se/Zn Te(Core/Shell)Heterostructures[J].J Am Chem Soc,2003,125:11 466-11 467.
    [54]Chen Z,Moore J,Radtke G,et al.Binary Nanoparticle Superlattices in the Semiconductor-Semiconductor System:Cd Te and Cd Se[J].J Am Chem Soc,2007,129:15 702-15 709.
    [55]Costi R,Saunders A E,Banin U.Colloidal Hybrid Nanostructures:A New Type of Functional Materials[J].Angew Chem Int Ed,2010,49:4 878-4 897.
    [56]Shi W,Zeng H,Sahoo Y,et al.A General Approach to Binary and Ternary Hybrid Nanocrystals[J].Nano Letters,2006,6:875.
    [57]Li X,Choy W C,Huo L,et al.Dual Plasmonic Nanostructures for High Performance Inverted Organic Solar Cells[J].Advanced Materials,2012,24:3 046-3 052.
    [58]Wang W,Wu S,Reinhardt K,et al.Broadband Light Absorption Enhancement in Thin-Film Silicon Solar Cells[J].Nano Letters,2010,10:2 012-2 018.
    [59]Le F,Brandl D W,Urzhumov Y A,et al.Metallic Nanoparticle Arrays:A Common Substrate for Both Surface-Enhanced Raman Scattering and Surface-Enhanced Infrared Absorption[J].ACS Nano,2008,2:707-718.
    [60]Ye Z,Chaudhary S,Kuang P,et al.Broadband Light Absorption Enhancement in Polymer Photovoltaics Using Metal Nanowall Gratings as Transparent Electrodes[J].Optics Express,2012,20:12213-12 221.
    [61]Selvakumar N,Santhoshkumar S,Basu S,et al.Spectrally Selective Cr Mo N/Cr ON Tandem Absorber for Mid-temperature Solar Thermal Applications[J].Solar Energy Materials and Solar Cells,2013,109:97-103.
    [62]Yin Y,Pan Y,Hang L,et al.Direct Current Reactive Sputtering Cr-Cr2O3Cermet Solar Selective Surfaces for Solar Hot Water Applications[J].Thin Solid Films,2009,517:1 601-1 606.
    [63]Juang R C,Yeh Y C,Chang B H,et al.Preparation of Solar Selective Absorbing Coatings by Magnetron Sputtering from a Single Stainless Steel Target[J].Thin Solid Films,2010,518:5 501-5 504.
    [64]Geng Q F,Zhao X,Gao X H,et al.Sol-Gel Combustion-Derived Co Cu Mn OxSpinels as Pigment for Spectrally Selective Paints[J].Journal of the American Ceramic Society,2011,94:827-832.
    [65]Crnjak Orel Z,Klanjek Gunde M.Spectrally Selective Paint Coatings:Preparation and Characterization[J].Solar Energy Materials and Solar Cells,2001,68:337-353.
    [66]Saxena V,Rani R U,Sharma A.Studies on Ultra High Solar Absorber Black Electroless Nickel Coatings on Aluminum Alloys for Space Application[J]Surface and Coatings Technology,2006,201:855-862.
    [67]Rani R U,Sharma A,Minu C,et al.Studies on Black Electroless Nickel Coatings on Titanium Alloys for Spacecraft Thermal Control Applications[J].Journal of Applied Electrochemistry,2010,40:333-339.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700