用户名: 密码: 验证码:
纳米TiO_2/还原石墨烯复合修饰电极用于食品中柠檬黄的检测
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Detection of Tartrazine Based on TiO_2/Electrochemically Reduced Graphene Composites Modified Electrode
  • 作者:刘晓鹏 ; 丁子彧 ; 贺全国 ; 李广利 ; 刘军 ; 邓培红
  • 英文作者:LIU Xiaopeng;DING Ziyu;HE Quanguo;LI Guangli;LIU Jun;DENG Peihong;College of Life Sciences and Chemistry,Hunan University of Technology;Department of Chemistry and Material Science,Hengyang Normal University;
  • 关键词:TiO2 ; 还原石墨烯 ; 修饰电极 ; 柠檬黄 ; 电催化
  • 英文关键词:TiO2;;reduced grapheme oxide;;modified electrode;;tartrazine;;electrocatalysis
  • 中文刊名:BZXB
  • 英文刊名:Packaging Journal
  • 机构:湖南工业大学生命科学与化学学院;衡阳师范学院化学与材料科学学院;
  • 出版日期:2018-07-12 17:44
  • 出版单位:包装学报
  • 年:2018
  • 期:v.10;No.38
  • 基金:国家自然科学基金资助项目(61703152);; 湖南省自然科学基金资助项目(2016JJ4010,2018JJ3134);; 株洲市科技计划基金资助项目(201707-201806);; 衡阳师范学院省级平台开放基金资助项目(GD16K02)
  • 语种:中文;
  • 页:BZXB201803005
  • 页数:9
  • CN:03
  • ISSN:43-1499/TB
  • 分类号:31-39
摘要
为了检测食品中柠檬黄的含量,利用滴涂法和电化学还原法制备纳米TiO_2/还原石墨烯复合修饰玻碳电极(TiO_2-Er GO/GCE)。采用透射电子显微镜和X射线粉末衍射仪对TiO_2和TiO_2-GO两种修饰电极材料进行表征;通过循环伏安法观察了柠檬黄在不同电极上的电化学行为,并对检测条件如p H值、富集电位、富集时间进行了优化。实验结果表明:TiO_2-Er GO/GCE增大了电极的电化学活性面积,提高了柠檬黄的电化学氧化响应;最优的检测条件为p H值为3.7、富集电位为-0.20 V、富集时间为180 s;在最优的检测条件下,采用线性扫描伏安法检测柠檬黄的线性范围为2.0×10-8~2.0×10-5 mol/L,检测限为8.0×10-9 mol/L(信噪比为3)。
        TiO_2/electrochemically reduced graphene composite modified glassy carbon electrode(TiO_2-Er GO/GCE) for the purpose of sensitive detection of Tartrazine was prepared by dropping-casting followed by an electrochemical reduction method. The prepared material was characterized by transmission electron microscopy(TEM) and X-ray diffraction(XRD). Cyclic voltammetry and second-order derivative linear scan voltammetry were performed for analyzing the electrochemical sensing of tartrazine on different electrodes. The determination conditions(including p H value, accumulation potential as well as time) were optimized systematically. The results showed that the TiO_2-Er GO composites increased the electrochemical active area and enhanced the electrochemical responses of tartrazine significantly. The optimal p H was 3.7. The optimal accumulation potential and time were-0.2 V and 180 s respectively. Under the optimum detection conditions, the peak current was found to be linear with tartrazine concentration in the range of 2.0×10-8~2.0×10-5 mol/L with a lower detection limit of 8.0×10-9 mol/L(S/N:3). The proposed TiO_2-Er GO/GCEs have been successfully applied in the detection of tartrazine in soft drink samples with satisfactory results.
引文
[1]IAMAS N E,GARRIDO M,DI NEZIO M S,et al.Second Order Advantage in the Determination of Amaranth,Sunset Yellow FCF and Tartrazine by UVVis and Multivariate Curve Resolution-Alternating Least Squares[J].Analytica Chimica Acta,2009,655(1/2):38-42.
    [2]NEVADO J J B,FLORES J R,LLERENA M J V.Adsorptive Stripping Voltammetry of Tartrazine At the Hanging Mercury Drop Electrode in Soft Drinks[J].Fresenius Journal of Analytical Chemistry,1997,357(7):989-994.
    [3]VIDOTTI E C,COSTA W F,OLIVEIRA C C.Development of a Green Chromatographic Method for Determination of Colorants in Food Samples[J].Talanta,2006,68(3):516-521.
    [4]MAJIDI M R,POURNAGHI-AZAR M H,BAJ R F B,et al.Formation of Graphene Nanoplatelet-Like Structures on Carbon-Ceramic Electrode Surface:Application for Simultaneous Determination of Sunset Yellow and Tartrazine in Some Food Samples[J].Ionics,2015,21(3):1-13.
    [5]MA M,LUO X,CHEN B,et al.Simultaneous Determination of Water-Soluble and Fat-Soluble Synthetic Colorants in Foodstuff by High-Performance Liquid Chromatography-Diode Array Detection-Electrospray Mass Spectrometry[J].Journal of Chromatography A,2006,1103(1):170-176.
    [6]夏立娅,韩媛媛,匡林鹤,等.薄层色谱扫描法同时检测豆制品中碱性橙、皂黄、柠檬黄和日落黄以及辣椒粉中酸性橙Ⅱ、丽春红2R和罗丹明B[J].分析试验室,2010,29(6):15-18.XIA Liya,HAN Yuanyuan,KUANG Linhe,et al.Simultaneous Determination of Basic Orange2,Metanil Yellow,Tartrazine,Sunset Yellow in Bean-Product and Acid OrangeⅡ,Ponceau 2R,Rhodanmine B in Chili Powder by Thin-Layer Chromatographic Scanning[J].Chinese Journal of Analysis Laboratory,2010,29(6):15-18.
    [7]郭群,杜艳红,张李文,等.紫外分光光度法测定合成色素日落黄和柠檬黄[J].农技服务,2016,33(14):18-19.GUO Qun,DU Yanhong,ZHANG Liwen,et al.Ultraviolet Spectrophotometry for Measurements of Sunset Yellow and Tartrazine[J].Agricultural Technology Service,2016,33(14):18-19.
    [8]PAN X R,QIN P F,LIU R T,et al.Characterizing the Interaction Between Tartrazine and Two Serum Albumins by a Hybrid Spectroscopic Approach[J].Journal of Agricultural&Food Chemistry,2011,59(12):6650-6656.
    [9]JAGER A V,TONIN F G,TAVARES M F.Optimizing the Separation of Food Dyes by Capillary Electrophoresis[J].Journal of Separation Science,2005,28(9/10):957-967.
    [10]WANG M L,GAO Y Q,SUN Q,et al.Sensitively Simultaneous Determination of Sunset Yellow and Tartrazine in Foods Based on Polypyrrole Modified Oxidized Single-Walled Carbon Nanotubes[J].Journal of the Electrochemical Society,2014,161(14):B297-B304.
    [11]M SAKTHIVEL,SIVAKUMAR M,CHEN SM,et al.Electrochemical Synthesis of Poly(3,4-Ethylenedioxythiophene)on Terbium Hexacyanoferrate for Sensitive Determination of Tartrazine[J].Sensors&Actuators B:Chemical,2018,256:195-203.
    [12]SIERRA-ROSALES P,TOLEDO-NEIRA C,SQUELLA J A.Electrochemical Determination of Food Colorants in Soft Drinks Using MWCNT-Modified GCEs[J].Sensors&Actuators B:Chemical,2017,240:1257-1264.
    [13]DENG K Q,LI C X,LI X F,et al.Simultaneous Detection of Sunset Yellow and Tartrazine Using the Nanohybrid of Gold Nanorods Decorated Graphene Oxide[J].Journal of Electroanalytical Chemistry,2016,780:296-302.
    [14]RACCICHINI R,VARZI A,PASSERINI S,et al.The Role of Graphene for Electrochemical Energy Storage[J].Nature Materials,2015,14(3):271-279.
    [15]雷颖,杨蓉,王黎晴,等.石墨烯的功能化及其在储能材料领域中的应用[J].化学通报,2017,80(9):802-808.LEI Ying,YANG Rong,WANG Liqing,et al.The Functionalization of Graphene and Their Applications in the Field of Energy Storage Materials[J].Chemistry,2017,80(9):802-808.
    [16]许振宁,王默,殷焕顺,等.基于氮掺杂石墨烯传感器检测双酚A[J].化学传感器,2012,32(4):21-27.XU Zhenning,WANG Mo,YIN Huanshun,et al.Detection of Bisphenol A Based on Nitrogen-Doped Grapheme Sensor[J].Chemical Sensors,2012,32(4):21-27.
    [17]PATTAR V P,NANDIBEWOOR S T.Selective and Sensitive Electro Chemical Determination of D-Cycloserine Using Graphene Paste Sensor and Its Application Studies[J].Analytical Chemistry Letters,2016,6(5):478-491.
    [18]贺钰,蔡华飞.石墨烯及石墨烯基复合柔性透明电极的研制[J].包装学报,2016,8(1):14-19.HE Yu,CAI Huafei.Synthesis of Graphene and Graphene-Based Flexible Transparent Electrode[J].Packaging Journal,2016,8(1):14-19.
    [19]HE Q G,LIU J,LIU X P,et al.Preparation of CuO-Reduced Graphene Nanocomposite Modified Electrodes Towards Ultrasensitive Dopamine Detection[J].Sensors,2018,18(1):199.
    [20]贺全国,梁静,李广利,等.基于MnO2纳米线-还原石墨烯复合修饰电极的多巴胺电化学检测[J].分析化学,2018,46(3):438-445.HE Quanguo,LIANG Jing,LI Guangli,et al.Electrochemical Detection of Dopamine Based on MnO2 Nanowires/Reduced Graphene Oxide Composites Modified Glassy Carbon Electrode[J].Chinese Journal of Analytical Chemistry,2018,46(3):438-445.
    [21]贺全国,梁静,李广利,等.纳米Fe3O4-还原石墨烯复合材料修饰电极的制备及电化学检测多巴胺[J].复合材料学报,2017:1-9.DOI:10.13801/j.cnki.fhclxb.20171208.002.HE Quanguo,LIANG Jing,LI Guangli,et al.Fabrication of Nano Fe3O4-Reduced Graphene Oxide Composite Modified Electrode and Its Application for the Determination of Dopamine[J].Acta Materiae Compositae Sinica,2017:1-9.DOI:10.13801/j.cnki.fhclxb.20171208.002.
    [22]贺全国,刘晓鹏,邓培红,等.MnO2纳米棒-还原石墨烯复合修饰玻碳电极用于苋菜红的检测[J].复合材料学报,2018:1-9.DOI:10.13801/j.cnki.fhclxb.20180329.003.HE Quanguo,LIU Xiaopeng,DENG Peihong,et al.Preparation of MnO2 Nanorods-Reduced Graphene Composite Modified Electrodes and Application in Detection of Amaranth[J].Acta Materiae Compositae Sinica,2018:1-9.DOI:10.13801/j.cnki.fhclxb.20180329.003.
    [23]HE Q G,LIU J,LIU X P,et al.Fabrication of Amine-Modified Magnetite-Electrochemically Reduced Graphene Oxide Nanocomposite Modified Glassy Carbon Electrode for Sensitive Dopamine Determination[J].Nanomaterials,2018,8:194.
    [24]LEE A,LIBERA J A,WALDMAN R Z,et al.Conformal Nitrogen-Doped TiO2 Photocatalytic Coatings for Sunlight.Activated Membranes[J].Advanced Sustainable Systems,2017,1(1/2):201600041.
    [25]TOSTóN S,CAMARILLO R,MARTíNEZ F,等.超临界合成Pt修饰的TiO2用于光催化CO2还原制备太阳能燃料[J].催化学报,2017,38(4):636-650.TOSTóN S,CAMARILLO R,MARTíNEZ F,et al.Supercritical Synthesis of Platinum-Modified Titanium Dioxide for Solar Fuel Production from CarbonDioxide[J].Chinese Journal of Catalysis,2017,38(4):636-650.
    [26]ARKAN E,PAIMARD G,MORADI K.A Novel Electrochemical Sensor Based on Electrospun TiO2Nanoparticles/Carbon Nanofibers for Determination of Idarubicin in Biological Samples[J].Journal of Electroanalytical Chemistry,2017,801:480-487.
    [27]HUMMERS JR W S,OFFEMAN R E.Preparation of Graphitic Oxide[J].Journal of the American Chemical Society,1958,80(6):1339.
    [28]BARD A J,FAULKNER L R.Electrochemical Methods:Fundamentals and Applications,2nd Edition[M].Wiley,1980.
    [29]WANG Z F,ZHANG H,WANG Z P,et al.Trace Analysis of Ponceau 4R in Soft Drinks Using Differential Pulse Stripping Voltammetry at SWCNTs Composite Electrodes Based on PEDOT:PSS Derivatives[J].Food Chemistry,2015,180:186-193.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700