用户名: 密码: 验证码:
泥石流屈服应力测试的塌落度法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Application of the slump test method to measurement of the debris flow yield stress
  • 作者:杨愧 ; 周振华 ; 任喆 ; 王昆 ; 徐则民
  • 英文作者:YANG Kui;ZHOU Zhenhua;REN Zhe;WANG Kun;XU Zemin;Department of Civil Engineering,Kunming University of Science and Technology;Department of Earth Science,Kunming University of Science and Technology;
  • 关键词:泥石流 ; 屈服应力 ; 塌落度法 ; 怒江泥石流 ; 东月各泥石流
  • 英文关键词:debris flow;;yield stress;;slump test method;;Nujiang debris flow;;Dongyuege debris flow
  • 中文刊名:SWDG
  • 英文刊名:Hydrogeology & Engineering Geology
  • 机构:昆明理工大学建筑工程学院土木系;昆明理工大学国土资源工程学院地科系;
  • 出版日期:2018-01-15
  • 出版单位:水文地质工程地质
  • 年:2018
  • 期:v.45;No.279
  • 基金:国家自然科学基金-云南联合基金重点项目(U1502232;U1033601);; 教育部高等学校博士学科点专项科研基金项目(20135314110005)
  • 语种:中文;
  • 页:SWDG201801023
  • 页数:7
  • CN:01
  • ISSN:11-2202/P
  • 分类号:157-163
摘要
屈服应力是泥石流的关键流变参数,但目前该参数的获取主要依赖常规的流变仪,无法对含有粗大颗粒的泥石流进行测试。针对此问题,引入塌落度-屈服应力理论,采用直径和高度均为10.8 cm的圆柱塌落度桶对"2010.8.18"怒江东月各泥石流堆积物原样中上限粒径为2 mm和2 cm的部分进行了塌落度-屈服应力测试研究,两种上限粒径重构泥石流屈服应力的测试结果分别采用桨叶法(桨式流变仪)和斜面法(斜面流变仪)进行校验。实验结果表明:对于上限粒径为2 mm的泥石流,塌落度法与桨叶法测试结果基本相同,相对误差为1.47%~17.5%,平均相对误差为7.37%;对于上限粒径为2 cm的泥石流,塌落度法测试结果平均略大于斜面法,相对误差为12.27%~19.07%,平均相对误差为16.89%;理论分析表明,该圆柱形塌落度法适用于碎屑上限粒径为42 mm、塌落度不小于10.8 mm的泥石流。塌落度法不仅可以大幅度提高测试对象的上限粒径,而且测试精度较高,尤其适合于泥石流屈服应力的现场测试。
        Yield stress is the key parameter of debris flow. Currently it is mainly obtained from conventional rheological tests,which are not applicable to the debris flow containing coarse particles. In order to adress this problem,the slump-yield stress theory is introduced. In this paper,the deposits of the 2010 Dongyuege debris-flow event in Nujiang is taken as the research object and the slump-yield stress tests are carried out by using a cylindrical slump barrel with 10. 8 cm in both diameter and height. The maximum grain size of the two kinds of tested debris-flow samples is 2 mm and 2 cm,respectively. The test results of yield stress were verified by vane-rheometer and the tilting plane rheometer,separately. The results show that for the debrisflow bodies with the maximum grain size of 2 mm,the yield stress values obtained from slump test method are generally consistent with that from the vane-rheometer,with deviation of 1. 47 %-17. 5 % and average deviation of 7. 37 %. For the debris flow bodies with the maximum grain size of 2 cm,the yield stress values obtained from the inclined plane test method are slightly lower than that from the slump test method,withdeviation of 12. 27 %-19. 07 % and average deviation of 16. 89 %. Theoretically,the cylinder slump test is valid for the debris flow whose maximum grain size is 42 mm and the slump is larger than 10. 8 mm. The slump test method can not only greatly enhance the maximum grain size of the test object,but also has a high test precision which is especially suitable for the debris-flow yield stress test in situ.
引文
[1]杨东旭,游勇,陈晓清,等.汶川震区狭陡型泥石流典型特征与防治[J].水文地质工程质,2015,42(1):146-153.[YANG D X,YOU Y,CHEN X Q,et al.Typical characteristics and mitigation of debris flow in norrow-steep gullies in the Wenchuan earthquake areas[J].Hydrogeology&Engineering Geology,2015,42(1):146-153.(in Chinese)]
    [2]李文强,石豫川,王敬勇.雅鲁藏布江中游某水电站库区泥石流工程影响分析[J].水文地质工程地质,2013,40(1):89-92.[LI W Q,SHI Y C,WANG J Y.Impacts of debris flows on the reservoir of a hydropower station in the middle of the YarlungZangbo River[J].Hydrogeology&Engineering Geology,2013,40(1):89-92.(in Chinese)]
    [3]中国科学院兰州冰川冻土研究所.甘肃泥石流[M].北京:人民交通出版,1982.[Lanzhou Institute of Glaciology and Cryopcdology.Debris flow in Gansu Province[M].Beijing:Publishing House of People’s Transportation,1992.(in Chinese)]
    [4]Phillips C J,Davies T R H.Determining rheological parameters of debris flow material[J].Geomorphology,1991,4(2):101-110.
    [5]Coussot P,Piau J.A large-scale field coaxial cylinder rheometer for the study of the rheology of natural coarse suspensions[J].Journal of Rheology,1995,39(39):105-124.
    [6]王裕宜,詹钱登,邹仁元.粘性泥石流体应力过冲特征与阵性流形成机理初探[J].中国地质灾害与防治学报,2000,11(3):53-57.[WANG Y Y,ZHAN Q D,ZOU R Y.An approach to relationship between over—stress behavior and forming mechanism of viscous debris flow surges[J].The Chinese Journal of Geological Hazard and Control,2000,11(3):53-57.(in Chinese)]
    [7]杨红娟,韦方强,胡凯衡,等.不同上限粒径泥石流浆体的流变参数变化规律[J].水利学报,2016,47(7):884-890.[YANG H J,WEI F Q,HU K H,et al.Rheological parameters of debris flow slurries with different maximum grain sizes[J].Journal of Hydrolic Engineering,2016,47(7):884-890.(in Chinese)]
    [8]GB/T 50080—2002普通混凝土拌合物性能试验方法标准[S].[GB/T 50080—2002 Standard test method for the performance of ordinary concrete[S].(in Chinese)]
    [9]Murata J.Flow and deformation of fresh concrete[J].Materials and Structures,1984,17(2):117-129.
    [10]Christensen G.Modelling the flow of fresh concrete:The slump test[J].Dissertation Abstracts International,1991,52(9):48-56.
    [11]Clayton S,Grice T G,Boger D V.Analysis of the slump test for on-site yield stress measurement of mineral suspensions[J].International Journal of Mineral Processing,2003,70(1/4):3-21.
    [12]Pashias N,Boger D V,Summers J,et al.A fifty cent rheometer for yield stress measurement[J].Journal of Rheology,1996,40(6):1179-1189.
    [13]Schatzmann M,Bezzola G R,Minor H E,et al.Rheometry for large-particulated fluids:analysis of the ball measuring system and comparison to debris flow rheometry[J].Rheologica Acta,2009,48(7):715-733.
    [14]Hibbeler R C.Engineering mechanics-mechanics of materials[M].New Jersey:Prentice Hall,1997.
    [15]Saak A W,Jennings H M,Shah S P.A generalized approach for the determination of yield stress by slump and slump flow[J].Cement&Concrete Research,2004,34(3):363-371.
    [16]Boger D V.Rheology and the resource industries[J].Chemical Engineering Science,2009,64(22):4525-4536.
    [17]Coussot P,Boyer S.Determination of yield stress fluid behaviour from inclined plane test[J].Rheologica Acta,1995,34(6):534-543.
    [18]Coussot P,Proust S,Ancey C.Rheological interpretation of deposits of yield stress fluids[J].Journal of Non-Newtonian Fluid Mechanics,1996,66(1):55-70.
    [19]Liu,Fei K,Mei,et al.Slow spreading of a sheet of Bingham fluid on an inclined plane[J].Journal of Fluid Mechanics,1989,207(1):505-529.
    [20]Takahashi T.Debris flow[J].Annual Review of Fluid Mechanics,2007,13(13):57-77.
    [21]Pierson T C.Dominant particle support mechanisms in debris flows at Mt Thomas,New Zealand,and implications for flow mobility[J].Sedimentology,2006,28(1):49-60.
    [22]Dzuy N Q,Boger D V.Direct Yield Stress Measurement with the Vane Method[J].Journal of Rheology,1985,29(3):335-347.
    [23]赵惠林.叶轮法测高浓度泥浆的屈服应力[J].泥沙研究,1997(1):76-81.[ZHAO H L.Measurement of yield stress for hyper-concentrated slurry by vane method[J].Journal of Sediment Research,1997(1):76-81(in Chinese)]
    [24]Saak A W,Jennings H M,Shah S P.The influence of wall slip on yield stress and viscoelastic measurements of cement paste[J].Cement&Concrete Research,2001,31(2):205-212.
    [25]沈慧明,吴爱祥,姜立春,等.全尾砂膏体小型圆柱塌落度检测[J].中南大学学报(自然科学版),2016,47(1):204-209.[SHEN H M,WU A X,JIANG L C,et al.Small cylindrical slump test for unclassified tailings paste[J].Journal of Central South University(Science and Technology),2016,47(1):204-209(in Chinese)]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700