用户名: 密码: 验证码:
力学因素对间充质干细胞神经向分化的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of mechanical stresses on neural differentiation of mesenchymal stem cells
  • 作者:江静怡 ; 樊瑜波 ; 郑丽沙
  • 英文作者:Jiang Jing-yi;Fan Yu-bo;Zheng Li-sha;Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University;Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University;
  • 关键词:间质干细胞 ; 细胞分化 ; 神经元 ; 应力 ; 物理 ; 组织工程 ; 机械应力 ; 细胞外基质 ; 三维培养 ; 间充质干细胞 ; 神经向分化 ; 干细胞 ; 国家自然科学基金
  • 英文关键词:,Mesenchymal Stem Cells;;Cell Differentiation;;Neurons;;Stress,Mechanical;;Tissue Engineering
  • 中文刊名:XDKF
  • 英文刊名:Chinese Journal of Tissue Engineering Research
  • 机构:北京航空航天大学生物与医学工程学院生物力学与力生物学教育部重点实验室;北京航空航天大学生物医学工程高精尖创新中心;
  • 出版日期:2018-05-16 09:44
  • 出版单位:中国组织工程研究
  • 年:2018
  • 期:v.22;No.838
  • 基金:国家自然科学基金(11572030,61227902,11120101001,11421202);; 科技部国家重点研发计划(2017YFC0108505,2017YFC0108500)~~
  • 语种:中文;
  • 页:XDKF201817025
  • 页数:8
  • CN:17
  • ISSN:21-1581/R
  • 分类号:143-150
摘要
背景:目前,通过对细胞施加机械力学刺激或改变细胞所处的微环境来调控干细胞的分化方向,已经成为了组织工程与再生医学领域的研究热点。目的:综述了近10年来力学因素调控间充质干细胞神经向分化领域的研究进展,为干细胞替代疗法治疗退行性疾病提供相关的理论基础。方法:检索Web of Science和Pub Med数据库中关于力学因素对间充质干细胞神经向分化影响的文献,并进行系统的归纳总结和分析,最终得到104篇相关文献。结果与结论:机械力刺激、细胞外物理环境因素对骨髓间充质干细胞、脂肪间充质干细胞、牙髓干细胞、子宫内膜干细胞等间充质干细胞的神经向分化有重要影响。不同的力学因素可能通过PI3K-AKT-m TOR、Wnt/β-catenin、Rho、MAPK等信号通路调控间充质干细胞的神经向分化,但具体的机制还有待进一步研究。
        BACKGROUND: Currently, regulation of stem cell differentiation by mechanical stresses or microenvironment has become a popular issue in the tissue engineering and regenerative medicine. OBJECTIVE: To review the progress in the effects of mechanical stress on neural differentiation of mesenchymal stem cells in the last decade, providing theoretical basis for stem cell replacement therapy in the treatment of degenerative diseases. METHODS: A search of Web of Science and Pub Med database was done to retrieve articles addressing the effects of mechanical stresses on the neural differentiation of mesenchymal stem cells. After systematical analysis and summarization, 104 articles were finally selected and analyzed. RESULTS AND CONCLUSION: Mechanical stimulation and extracellular physical environment factors have important influence on the neural differentiation of mesenchymal stem cells from the bone marrow, adipose tissues, dental pulp and endometrium. PI3 K-AKT-m TOR, Wnt/beta-catenin, Rho, MAPK signaling pathways may be involved in the mechanical stresses regulated neural differentiation. However, the clear molecular mechanism needs further studies.
引文
[1]Manchineella S,Thrivikraman G,Basu B,et al.Surface-Functionalized Silk Fibroin Films as a Platform To Guide Neuron-like Differentiation of Human Mesenchymal Stem Cells.ACS Appl Mater Interfaces.2016;8(35):22849-22859.
    [2]Zhang J,Li D,Shen A,et al.Expression of RBMX after spinal cord injury in rats.J Mol Neurosci.2013;49(2):417-429.
    [3]Burdick JA,Ward M,Liang E,et al.Stimulation of neurite outgrowth by neurotrophins delivered from degradable hydrogels.Biomaterials.2006;27(3):452-459.
    [4]Shi W,Nie D,Jin G,et al.BDNF blended chitosan scaffolds for human umbilical cord MSC transplants in traumatic brain injury therapy.Biomaterials.2012;33(11):3119-3126.
    [5]Wichterle H,Lieberam I,Porter JA,et al.Directed differentiation of embryonic stem cells into motor neurons.Cell.2002;110(3):385-397.
    [6]Nishikawa S,Jakt LM,Era T.Embryonic stem-cell culture as a tool for developmental cell biology.Nat Rev Mol Cell Biol.2007;8(6):502-507.
    [7]Wang TT,Tio M,Lee W,et al.Neural differentiation of mesenchymal-like stem cells from cord blood is mediated by PKA.Biochem Biophys Res Commun.2007;357(4):1021-1027.
    [8]Caiazzo M,Dell'Anno MT,Dvoretskova E,et al.Direct generation of functional dopaminergic neurons from mouse and human fibroblasts.Nature.2011;476(7359):224-227.
    [9]Han DW,Tapia N,Hermann A,et al.Direct reprogramming of fibroblasts into neural stem cells by defined factors.Cell Stem Cell.2012;10(4):465-472.
    [10]Zuba-Surma EK,Kucia M,Ratajczak J,et al."Small stem cells"in adult tissues:very small embryonic-like stem cells stand up.Cytometry A.2009;75(1):4-13.
    [11]Pereira Lda V.The importance of the use of stem cells for public health.Cien Saude Colet.2008;13(1):7-14.
    [12]Lu P,Tuszynski MH.Can bone marrow-derived stem cells differentiate into functional neurons.Exp Neurol.2005;193(2):273-278.
    [13]Woodbury D,Schwarz EJ,Prockop DJ,et al.Adult rat and human bone marrow stromal cells differentiate into neurons.J Neurosci Res.2000;61(4):364-370.
    [14]Prockop DJ,Azizi SA,Colter D,et al.Potential use of stem cells from bone marrow to repair the extracellular matrix and the central nervous system.Biochem Soc Trans.2000;28(4):341-345.
    [15]Zhong W,Tian K,Zheng X,et al.Mesenchymal stem cell and chondrocyte fates in a multishear microdevice are regulated by Yes-associated protein.Stem Cells Dev.2013;22(14):2083-2093.
    [16]Ward DF Jr,Salasznyk RM,Klees RF,et al.Mechanical strain enhances extracellular matrix-induced gene focusing and promotes osteogenic differentiation of human mesenchymal stem cells through an extracellular-related kinase-dependent pathway.Stem Cells Dev.2007;16(3):467-480.
    [17]Takahashi K,Yamanaka S.Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors.Cell.2006;126(4):663-676.
    [18]Engler AJ,Sen S,Sweeney HL,et al.Matrix elasticity directs stem cell lineage specification.Cell.2006;126(4):677-689.
    [19]Lee HJ,Ewere A,Diaz MF,et al.TAZ responds to fluid shear stress to regulate the cell cycle.Cell Cycle.2017:1-21.
    [20]Sera T,Sumii T,Fujita R,et al.Effect of shear stress on the migration of hepatic stellate cells.In Vitro Cell Dev Biol Anim.2018;54(1):11-22.
    [21]Nishii K,Brodin E,Renshaw T,et al.Shear stress upregulates regeneration-related immediate early genes in liver progenitors in3D ECM-like microenvironments.J Cell Physiol.2017 Oct 20.doi:10.1002/jcp.26246.[Epub ahead of print]
    [22]Kapur S,Baylink DJ,Lau KH.et al.Fluid flow shear stress stimulates human osteoblast proliferation and differentiation through multiple interacting and competing signal transduction pathways.Bone.2003;32(3):241-251.
    [23]Jeong SI,Kwon JH,Lim JI,et al.Mechano-active tissue engineering of vascular smooth muscle using pulsatile perfusion bioreactors and elastic PLCL scaffolds.Biomaterials.2005;26(12):1405-1411.
    [24]Kim MS,Yeon JH,Park JK.A microfluidic platform for3-dimensional cell culture and cell-based assays.Biomed Microdevices.2007;9(1):25-34.
    [25]Gronthos S,Franklin DM,Leddy HA,et al.Surface protein characterization of human adipose tissue-derived stromal cells.J Cell Physiol.2001;189(1):54-63.
    [26]Bunnell BA,Flaat M,Gagliardi C,et al.Adipose-derived stem cells:isolation,expansion and differentiation.Methods.2008;45(2):115-120.
    [27]Choi J,Kim S,Jung J,et al.Wnt5a-mediating neurogenesis of human adipose tissue-derived stem cells in a 3D microfluidic cell culture system.Biomaterials.2011;32(29):7013-7022.
    [28]Jeon KJ,Park SH,Shin JW,et al.Combined effects of flow-induced shear stress and micropatterned surface morphology on neuronal differentiation of human mesenchymal stem cells.J Biosci Bioeng.2014;117(2):242-247.
    [29]Mascotte-Cruz JU,Ríos A,Escalante B.Combined effects of flow-induced shear stress and electromagnetic field on neural differentiation of mesenchymal stem cells.Electromagn Biol Med.2016;35(2):161-166.
    [30]Basso N,Bellows CG,Heersche JN.Effect of simulated weightlessness on osteoprogenitor cell number and proliferation in young and adult rats.Bone.2005;36(1):173-183.
    [31]Grimm D,Bauer J,Kossmehl P,et al.Simulated microgravity alters differentiation and increases apoptosis in human follicular thyroid carcinoma cells.FASEB J.2002;16(6):604-606.
    [32]Dai ZQ,Wang R,Ling SK,et al.Simulated microgravity inhibits the proliferation and osteogenesis of rat bone marrow mesenchymal stem cells.Cell Prolif.2007;40(5):671-684.
    [33]Hochleitner B,Hengster P,Duo L,et al.A novel bioartificial liver with culture of porcine hepatocyte aggregates under simulated microgravity.Artif Organs.2005;29(1):58-66.
    [34]Marquette ML,Byerly D,Sognier M.A novel in vitro three-dimensional skeletal muscle model.In Vitro Cell Dev Biol Anim.2007;43(7):255-263.
    [35]Wang N,Wang H,Chen J,et al.The simulated microgravity enhances multipotential differentiation capacity of bone marrow mesenchymal stem cells.Cytotechnology.2014;66(1):119-131.
    [36]Xue L,Li Y,Chen J.Duration of simulated microgravity affects the differentiation of mesenchymal stem cells.Mol Med Rep.2017;15(5):3011-3018.
    [37]Chen J,Liu R,Yang Y,et al.The simulated microgravity enhances the differentiation of mesenchymal stem cells into neurons.Neurosci Lett.2011;505(2):171-175.
    [38]Zarrinpour V,Hajebrahimi Z,Jafarinia M.Expression pattern of neurotrophins and their receptors during neuronal differentiation of adipose-derived stem cells in simulated microgravity condition.Iran J Basic Med Sci.2017;20(2):178-186.
    [39]Park JS,Chu JS,Cheng C,et al.Differential effects of equiaxial and uniaxial strain on mesenchymal stem cells.Biotechnol Bioeng.2004;88(3):359-368.
    [40]Chen YJ,Huang CH,Lee IC,et al.Effects of cyclic mechanical stretching on the m RNA expression of tendon/ligament-related and osteoblast-specific genes in human mesenchymal stem cells.Connect Tissue Res.2008;49(1):7-14.
    [41]Huang CH,Chen MH,Young TH,et al.Interactive effects of mechanical stretching and extracellular matrix proteins on initiating osteogenic differentiation of human mesenchymal stem cells.J Cell Biochem.2009;108(6):1263-1273.
    [42]Leong WS,Wu SC,Pal M,et al.Cyclic tensile loading regulates human mesenchymal stem cell differentiation into neuron-like phenotype.J Tissue Eng Regen Med.2012;6 Suppl 3:s68-79.
    [43]Cho H,Seo YK,Jeon S,et al.Neural differentiation of umbilical cord mesenchymal stem cells by sub-sonic vibration.Life Sci.2012;90(15-16):591-599.
    [44]Choi YK,Cho H,Seo YK,et al.Stimulation of sub-sonic vibration promotes the differentiation of adipose tissue-derived mesenchymal stem cells into neural cells.Life Sci.2012;91(9-10):329-337.
    [45]Discher DE,Janmey P,Wang YL.Tissue cells feel and respond to the stiffness of their substrate.Science.2005;310(5751):1139-1143.
    [46]Yim EK,Pang SW,Leong KW.Synthetic nanostructures inducing differentiation of human mesenchymal stem cells into neuronal lineage.Exp Cell Res.2007;313(9):1820-1829.
    [47]Hynes RO.The extracellular matrix:not just pretty fibrils.Science.2009;326(5957):1216-1219.
    [48]Geiger B,Spatz JP,Bershadsky AD.Environmental sensing through focal adhesions.Nat Rev Mol Cell Biol.2009;10(1):21-33.
    [49]Wang N,Tytell JD,Ingber DE.Mechanotransduction at a distance:mechanically coupling the extracellular matrix with the nucleus.Nat Rev Mol Cell Biol.2009;10(1):75-82.
    [50]Vogel V,Sheetz M.Local force and geometry sensing regulate cell functions.Nat Rev Mol Cell Biol.2006;7(4):265-275.
    [51]Dalby MJ,Gadegaard N,Tare R,et al.The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder.Nat Mater.2007;6(12):997-1003.
    [52]Janmey PA,Winer JP,Murray ME,et al.The hard life of soft cells.Cell Motil Cytoskeleton.2009;66(8):597-605.
    [53]Théry M.Micropatterning as a tool to decipher cell morphogenesis and functions.J Cell Sci.2010;123(Pt 24):4201-4213.
    [54]Higuchi A,Ling QD,Chang Y,et al.Physical cues of biomaterials guide stem cell differentiation fate.Chem Rev.2013;113(5):3297-3328.
    [55]Seiler C,Davuluri G,Abrams J,et al.Smooth muscle tension induces invasive remodeling of the zebrafish intestine.PLo S Biol.2012;10(9):e1001386.
    [56]Butcher DT,Alliston T,Weaver VM.A tense situation:forcing tumour progression.Nat Rev Cancer.2009;9(2):108-122.
    [57]Klein EA,Yin L,Kothapalli D,et al.Cell-cycle control by physiological matrix elasticity and in vivo tissue stiffening.Curr Biol.2009;19(18):1511-1518.
    [58]Zaman MH,Trapani LM,Sieminski AL,et al.Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis.Proc Natl Acad Sci U S A.2006;103(29):10889-10894.
    [59]Raab M,Swift J,Dingal PC,et al.Crawling from soft to stiff matrix polarizes the cytoskeleton and phosphoregulates myosin-II heavy chain.J Cell Biol.2012;199(4):669-683.
    [60]Flanagan LA,Ju YE,Marg B,et al.Neurite branching on deformable substrates.Neuroreport.2002;13(18):2411-2415.
    [61]Discher DE,Mooney DJ,Zandstra PW.Growth factors,matrices,and forces combine and control stem cells.Science.2009;324(5935):1673-1677.
    [62]Kong HJ,Polte TR,Alsberg E,et al.FRET measurements of cell-traction forces and nano-scale clustering of adhesion ligands varied by substrate stiffness.Proc Natl Acad Sci U S A.2005;102(12):4300-4305.
    [63]Rowlands AS,George PA,Cooper-White JJ.Directing osteogenic and myogenic differentiation of MSCs:interplay of stiffness and adhesive ligand presentation.Am J Physiol Cell Physiol.2008;295(4):C1037-1044.
    [64]Saha K,Keung AJ,Irwin EF,et al.Substrate modulus directs neural stem cell behavior.Biophys J.2008;95(9):4426-4438.
    [65]Engler AJ,Griffin MA,Sen S,et al.Myotubes differentiate optimally on substrates with tissue-like stiffness:pathological implications for soft or stiff microenvironments.J Cell Biol.2004;166(6):877-887.
    [66]Wang LS,Chung JE,Chan PP,et al.Injectable biodegradable hydrogels with tunable mechanical properties for the stimulation of neurogenesic differentiation of human mesenchymal stem cells in 3D culture.Biomaterials.2010;31(6):1148-1157.
    [67]Zhang QY,Zhang YY,Xie J,et al.Stiff substrates enhance cultured neuronal network activity.Sci Rep.2014;4:6215.
    [68]Kostic A,Sap J,Sheetz MP.RPTPalpha is required for rigidity-dependent inhibition of extension and differentiation of hippocampal neurons.J Cell Sci.2007;120(Pt 21):3895-3904.
    [69]Sun Y,Yong KM,Villa-Diaz LG,et al.Hippo/YAP-mediated rigidity-dependent motor neuron differentiation of human pluripotent stem cells.Nat Mater.2014;13(6):599-604.
    [70]Leong WS,Tay CY,Yu H,et al.Thickness sensing of h MSCs on collagen gel directs stem cell fate.Biochem Biophys Res Commun.2010;401(2):287-292.
    [71]Jiang L,Sun Z,Chen X,et al.Cells Sensing Mechanical Cues:Stiffness Influences the Lifetime of Cell-Extracellular Matrix Interactions by Affecting the Loading Rate.ACS Nano.2016;10(1):207-217.
    [72]Du J,Chen X,Liang X,et al.Integrin activation and internalization on soft ECM as a mechanism of induction of stem cell differentiation by ECM elasticity.Proc Natl Acad Sci U S A.2011;108(23):9466-9471.
    [73]Shih YR,Tseng KF,Lai HY,et al.Matrix stiffness regulation of integrin-mediated mechanotransduction during osteogenic differentiation of human mesenchymal stem cells.J Bone Miner Res.2011;26(4):730-738.
    [74]Provenzano PP,Inman DR,Eliceiri KW,et al.Matrix density-induced mechanoregulation of breast cell phenotype,signaling and gene expression through a FAK-ERK linkage.Oncogene.2009;28(49):4326-4343.
    [75]Alexanian AR,Liu QS,Zhang Z.Enhancing the efficiency of direct reprogramming of human mesenchymal stem cells into mature neuronal-like cells with the combination of small molecule modulators of chromatin modifying enzymes,SMAD signaling and cyclic adenosine monophosphate levels.Int J Biochem Cell Biol.2013;45(8):1633-1638.
    [76]Zouani OF,Kalisky J,Ibarboure E,et al.Effect of BMP-2 from matrices of different stiffnesses for the modulation of stem cell fate.Biomaterials.2013;34(9):2157-2166.
    [77]Lim SH,Liu XY,Song H,et al.The effect of nanofiber-guided cell alignment on the preferential differentiation of neural stem cells.Biomaterials.2010;31(34):9031-9039.
    [78]Georgiou M,Golding JP,Loughlin AJ,et al.Engineered neural tissue with aligned,differentiated adipose-derived stem cells promotes peripheral nerve regeneration across a critical sized defect in rat sciatic nerve.Biomaterials.2015;37:242-251.
    [79]Dalby MJ,Mc Cloy D,Robertson M,et al.Osteoprogenitor response to semi-ordered and random nanotopographies.Biomaterials.2006;27(15):2980-2987.
    [80]Silva GA,Czeisler C,Niece KL,et al.Selective differentiation of neural progenitor cells by high-epitope density nanofibers.Science.2004;303(5662):1352-1355.
    [81]Curtis A,Wilkinson C.Nantotechniques and approaches in biotechnology.Trends Biotechnol.2001;19(3):97-101.
    [82]Mc Beath R,Pirone DM,Nelson CM,et al.Cell shape,cytoskeletal tension,and Rho A regulate stem cell lineage commitment.Dev Cell.2004;6(4):483-495.
    [83]Kilian KA,Bugarija B,Lahn BT,et al.Geometric cues for directing the differentiation of mesenchymal stem cells.Proc Natl Acad Sci U S A.2010;107(11):4872-4877.
    [84]Watari S,Hayashi K,Wood JA,et al.Modulation of osteogenic differentiation in h MSCs cells by submicron topographically-patterned ridges and grooves.Biomaterials.2012;33(1):128-136.
    [85]Gobaa S,Hoehnel S,Roccio M,et al.Artificial niche microarrays for probing single stem cell fate in high throughput.Nat Methods.2011;8(11):949-955.
    [86]Mirzaei E,Ai J,Ebrahimi-Barough S,et al.The Differentiation of Human Endometrial Stem Cells into Neuron-Like Cells on Electrospun PAN-Derived Carbon Nanofibers with Random and Aligned Topographies.Mol Neurobiol.2016;53(7):4798-4808.
    [87]Javazon EH,Beggs KJ,Flake AW.Mesenchymal stem cells:paradoxes of passaging.Exp Hematol.2004;32(5):414-425.
    [88]Alavi A,Stupack DG.Cell survival in a three-dimensional matrix.Methods Enzymol.2007;426:85-101.
    [89]Nakajima M,Ishimuro T,Kato K,et al.Combinatorial protein display for the cell-based screening of biomaterials that direct neural stem cell differentiation.Biomaterials.2007;28(6):1048-1060.
    [90]Liu H,Lin J,Roy K.Effect of 3D scaffold and dynamic culture condition on the global gene expression profile of mouse embryonic stem cells.Biomaterials.2006;27(36):5978-5989.
    [91]Zhao F,Grayson WL,Ma T,et al.Effects of hydroxyapatite in 3-D chitosan-gelatin polymer network on human mesenchymal stem cell construct development.Biomaterials.2006;27(9):1859-1867.
    [92]Markusen JF,Mason C,Hull DA,et al.Behavior of adult human mesenchymal stem cells entrapped in alginate-GRGDY beads.Tissue Eng.2006;12(4):821-830.
    [93]Lutolf MP.Biomaterials:Spotlight on hydrogels.Nat Mater.2009;8(6):451-453.
    [94]Lee JH,Yu HS,Lee GS,et al.Collagen gel three-dimensional matrices combined with adhesive proteins stimulate neuronal differentiation of mesenchymal stem cells.J R Soc Interface.2011;8(60):998-1010.
    [95]Gu H,Yue Z,Leong WS,et al.Control of in vitro neural differentiation of mesenchymal stem cells in 3D macroporous,cellulosic hydrogels.Regen Med.2010;5(2):245-253.
    [96]Lee JH,Lee JY,Yang SH,et al.Carbon nanotube-collagen three-dimensional culture of mesenchymal stem cells promotes expression of neural phenotypes and secretion of neurotrophic factors.Acta Biomater.2014;10(10):4425-4436.
    [97]Khosravizadeh Z,Razavi S,Bahramian H,et al.The beneficial effect of encapsulated human adipose-derived stem cells in alginate hydrogel on neural differentiation.J Biomed Mater Res B Appl Biomater.2014;102(4):749-755.
    [98]Rao SR,Subbarayan R,Dinesh MG,et al.Differentiation of human gingival mesenchymal stem cells into neuronal lineages in3D bioconjugated injectable protein hydrogel construct for the management of neuronal disorder.Exp Mol Med.2016;48:e209.
    [99]Roozafzoon R,Lashay A,Vasei M,et al.Dental pulp stem cells differentiation into retinal ganglion-like cells in a three dimensional network.Biochem Biophys Res Commun.2015;457(2):154-160.
    [100]Gugliandolo A,Diomede F,Cardelli P,et al.Transcriptomic analysis of gingival mesenchymal stem cells cultured on 3D bioprinted scaffold:A promising strategy for neuroregeneration.J Biomed Mater Res A.2018;106(1):126-137.
    [101]Feng X,Lu X,Huang D,et al.3D porous chitosan scaffolds suit survival and neural differentiation of dental pulp stem cells.Cell Mol Neurobiol.2014;34(6):859-870.
    [102]Zhang J,Lu X,Feng G,et al.Chitosan scaffolds induce human dental pulp stem cells to neural differentiation:potential roles for spinal cord injury therapy.Cell Tissue Res.2016;366(1):129-142.
    [103]Ghasemi-Mobarakeh L,Prabhakaran MP,Morshed M,et al.Electrospun poly(epsilon-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering.Biomaterials.2008;29(34):4532-4539.
    [104]Jahani H,Jalilian FA,Wu CY,et al.Controlled surface morphology and hydrophilicity of polycaprolactone toward selective differentiation of mesenchymal stem cells to neural like cells.J Biomed Mater Res A.2015;103(5):1875-1881.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700