用户名: 密码: 验证码:
含砾滑带土三维颗粒流模型建模方法研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:CT SCANNING AND PFC MODELING COMBINED 3D METHOD FOR GRAVEL-BEARING SLIP SOIL
  • 作者:郑博宁 ; 丁大勇 ; 张丹 ; 高磊 ; 杨捷
  • 英文作者:ZHENG Boning;DING Dayong;ZHANG Dan;GAO Lei;YANG Jie;School of Earth Sciences and Engineering,Nanjing University;Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering,Hohai University;
  • 关键词:含砾滑带土 ; CT扫描技术 ; 颗粒流程序(PFC) ; 逆向重构 ; 三轴试验
  • 英文关键词:Gravel-bearing slip soil;;CT;;Particle Flow Code(PFC);;Inverse reconstruction;;Triaxial test
  • 中文刊名:GCDZ
  • 英文刊名:Journal of Engineering Geology
  • 机构:南京大学地球科学与工程学院;河海大学岩土力学与堤坝工程教育部重点实验室;
  • 出版日期:2019-06-15
  • 出版单位:工程地质学报
  • 年:2019
  • 期:v.27;No.131
  • 基金:国家自然科学基金项目(41272315,41572271);; 江苏省自然科学基金项目(BK20161239)资助~~
  • 语种:中文;
  • 页:GCDZ201903014
  • 页数:8
  • CN:03
  • ISSN:11-3249/P
  • 分类号:96-103
摘要
提出了基于CT扫描技术和PFC三维颗粒流程序建立含砾滑带土三维建模方法。首先,通过CT扫描技术获得含砾滑带土三轴试样的一系列二维切片图像,采用二值化和砾石边界识别方法,得到了砾石边界点云数据;其次,利用砾石边界点云数据,采用逆向重构得到各个砾石的三维模型;最后,将重构的三维砾石模型导入PFC三维颗粒流程序,建立颗粒流数值模型。计算结果表明:三轴剪切过程中,砾石的欧拉角随着试样剪切变形的发展而变化;与无砾石试样相比,砾石周围土体小球的运动方向更加杂乱,说明了砾石对含砾滑带土的剪切破坏有显著的影响。通过与三轴剪切试验过程中砾石的空间运动规律进行对比分析,验证了提出的建模方法是可行的。采用该方法研究砾石的空间运动特征,对于揭示砾石在含砾滑带土剪切破坏过程中的作用具有重要的意义。
        We used CT scanning and PFC3 Dto establish the gravel-bearing slip soil model in three dimensions.Firstly,we obtained the point cloud data of the gravels through binarization processing and boundary identifying technology based on a series of two-dimensional CT images. Then,according to the boundary point cloud data,we established the three-dimensional model of every gravel by inverse reconstruction method. Finally,we imported the reconstructive model into PFC3 D. The simulated results show that Euler angles of the gravels changed with the development of shearing deformation of the triaxial sample. Compared with the sample without gravels,the movement of balls around the gravels is more non-orientable,which indicates that the existence of the gravel has remarkable influence on the development of shearing zones. We verified the feasibility of this method through analyzing the moving regulation of the gravels in triaxial test. In brief,the study on the movement of gravels has great meaning to reveal the development of shear failure in gravel-bearing slip soil using CT and PFC.
引文
Chen P Y.2018.Research progress on PFC2Dsimulation of crack propagation characteristics of cracked rock[J].Journal of Engineering Geology,26(2):528-539.
    Ding X L,Zhang H M,Huang S L,et al.2012.Research on mechanical characteristics of unsaturated soil-rock mixture based on numerical experiments of mesostructure[J].Chinese Journal of Rock Mechanics and Engineering,31(8):1553-1566.
    Du X,Zeng Y W,Gao R,et al.2011.3D modeling of irregular shape particles for discrete element method based on X-ray tomography[J].Journal of Shanghai Jiao Tong University,45(5):711-715.
    Fan Y B,Li S H,Hou Y F,et al.2013.A study of the failure mechanism of rock and soil associate under different boundary conditions[J].Hydrogeology&Engineering Geology,40(3):48-52.
    Hardin B O,Kalinski M E.2005.Estimating the shear modulus of gravelly[J].Journal of Geotechnical and Geoenvironmental Engineering,131(7):867-875.
    Indraratna B,Nimbalkar S,Coop M,et al.2014.A constitutive model for coal-fouled ballast capturing the effects of particle degradation[J].Computers and Geotechnics,61:96-107.
    Ji T Y.2016.Sensitivity and analysis on gravel-soil interface parameters of the soil-rock mixture[C]∥Engineering Geology Committee of China Geological Society.Proceedings of 2016 National Engineering Geology Academic Conference.Beijing:China Geology Society Engineering Geology Committee:8.
    Jiang Y D,Xian X F,Xu J,et al.2004.A research on sandstone uniaxial and triaxial compression tests[J].China Mining Magazine,13(4):66-69.
    Jin L,Zeng Y W,Ye Y.2016.Three-Dimensional particle flow simulation of uniaxial compression tests on soil-rock mixture[J].Journal of Yangtze River Scientific Research Institute,33(7):93-104.
    Li C S,Zhang D,Wang H X,et al.2014.3D mesh generation for soil-rock mixture based on CT scanning[J].Rock and Soil Mechanics,35(9):2731-2736.
    Li Y X.2009.The application of particle flow code in studying of mechanical characteristics of soil-rock mixture[D].Wuhan:Yangtze River Scientific Research Institute.
    Lisjak A,Grasselli G.2014.A review of discrete modeling techniques for fracturing processes in discontinuous rock masses[J].Journal of Rock Mechanics and Geotechnical Engineering,6(4):301-314.
    Liu H T,Cheng X H.2009.Discrete element analysis for size effects of coarse-grained soils[J].Rock and Soil Mechanics,30(S):287-292.
    Potyondya D O,Cundall P A.2004.A bonded-particle model for rock[J].International Journal of Rock Mechanics and Mining sciences,41(6):1329-1364.
    Shao Y L.2016.The correction of particle flow simulation of the triaxial test on the servo mechanism and size effect[J].Shanxi Architecture,42(16):66-67.
    Tian W L,Yang S Q,Fang G.2016.Particle flow simulation on mechanical behavior of coal specimen under triaxial cyclic loading and unloading[J].Journal of China Coal Society,41(3):603-610.
    Wang F,Xu P H,Gao J W,et al.2014.Research on size effect of coarsegrained soils triaxial tests based on PFC[J].Highway Engineering,39(2):80-83.
    Wang L B,Park J Y,Fu Y R.2007.Representation of real particles for DEM simulation using X-ray tomography[J].Construction and Building Materials,21(2):338-346.
    Wang X B,Bai X Y,Zhang B W,et al.2018.Experimental studies of shear dilatancy of shear bands for wet clay specimens in uniaxial compression using digital image correlation metod[J].Journal of Engineering Geology,26(4):882-890.
    Wang Y,Li X.2015.Study of mesoscopic fractal feature and mechanical properties for rock and soil aggregate samples[J].Chinese Journal of Rock Mechanics and Engineering,34(S1):3397-3407.
    Xu M,Song E X.2009.Numerical simulation of the shear behavior of rockfills[J].Computers and Geotechnics,36(8):1259-1264.
    Xu W J,Hu R L,Yue Z Q,et al.2007.Mesostructural character and numerical simulation of mechanical properties of soil-rock mixtures[J].Chinese Journal of Rock Mechanics and Engineering,26(2):300-311.
    Yang Z P,Lei X D,Wang L,et al.2017.Impact of stone content to shear properties of soil-rock mixture using particle flow code simulation[J].Journal of Engineering Geology,25(4):1035-1045.
    Zhang P C,Xu J H.2003.Comparison of contrast between conventional and one sample with multilevel-loads triaxial compression test[J].Journal of Geological Hazards and Environment Preservation,14(1):57-60.
    Zhou J,Zhang L Q,Dai F C,et al.2013.Numerical simulation of direct shear tests for rock and soil mixture in a landslide based on bondedparticle model[J].Chinese Journal of Rock Mechanics and Engineering,32(S1):2650-2659.
    陈鹏宇.2018.PFC2D模拟裂隙岩石裂纹扩展特征的研究现状[J].工程地质学报,26(2):528-539.
    丁秀丽,张宏明,黄书岭,等.2012.基于细观数值试验的非饱和土石混合体力学特性研究[J].岩石力学与工程学报,31(8):1553-1566.
    杜欣,曾亚武,高睿,等.2011.基于CT扫描的不规则外形颗粒三维离散元建模[J].上海交通大学学报,45(5):711-715.
    范永波,李世海,侯岳峰,等.2013.不同边界条件下土石混合体破坏机制研究[J].水文地质工程地质,40(3):48-52.
    季婷媛.2016.土石混合体砾-土接触面参数的敏感性分析[C]∥中国地质学会工程地质专业委员会.2016年全国工程地质学术年会论文集.北京:中国地质学会工程地质专业委员会:8.
    姜永东,鲜学福,许江,等.2004.砂岩单轴三轴压缩试验研究[J].中国矿业,13(4):66-69.
    金磊,曾亚武,叶阳.2016.土石混合体单轴压缩试验的三维颗粒流数值模拟[J].长江科学院院报,33(7):93-104.
    李耀旭.2009.颗粒流方法在土石混合体力学特性研究中的应用[D].武汉:长江科学院.
    李长圣,张丹,王宏宪,等.2014.基于CT扫描的土石混合体三维数值网格的建立[J].岩土力学,35(9):2731-2736.
    刘海涛,程晓辉.2009.粗粒土尺寸效应的离散元分析[J].岩土力学,30(增刊):287-292.
    邵雨乐.2016.三轴试验离散元伺服机制及尺寸效应修正[J].山西建筑,42(16):66-67.
    田文岭,杨圣奇,方刚.2016.煤样三轴循环加卸载力学特征颗粒流模拟[J].煤炭学报,41(3):603-610.
    王飞,徐佩华,高井望,等.2014.基于PFC方法的粗粒土三轴试验尺寸效应研究[J].公路工程,39(2):80-83.
    王学滨,白雪元,张博闻,等.2018.基于数字图像相关方法的单轴压缩黏土试样剪切带剪胀实验研究[J].工程地质学报,26(4):882-890.
    王宇,李晓.2015.土石混合体细观分形特征与力学性质研究[J].岩石力学与工程学报,34(增1):3397-3407.
    徐文杰,胡瑞林,岳中琦,等.2007.土石混合体细观结构及力学特性数值模拟研究[J].岩石力学与工程学报,26(2):300-311.
    杨忠平,雷晓丹,王雷,等.2017.含石量对土石混合体剪切特性影响的颗粒离散元数值研究[J].工程地质学报,25(4):1035-1045.
    张品萃,胥建华.2003.土三轴压缩试验试验方法的对比探讨[J].地质灾害与环境保护,14(1):57-60.
    周剑,张路青,戴福初,等.2013.基于黏结颗粒模型某滑坡土石混合体直剪试验数值模拟[J].岩石力学与工程学报,32(增1):2650-2659.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700