用户名: 密码: 验证码:
甲流患儿鼻咽部及口咽部的菌群分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis on nasopharyngeal and oropharyngeal microbiota in children with influenza A
  • 作者:温智新 ; 于洁 ; 郑跃 ; 文飞球
  • 英文作者:WEN Zhixin;YU Jie;ZHENG Yuejie;WEN Feiqiu;Shenzhen Children′s Hospital;
  • 关键词:16S ; rDNA ; 菌群 ; 甲型流感病毒 ; 鼻咽部 ; 口咽部
  • 英文关键词:16S rDNA;;Microbiota;;Influenza A virus;;Nasopharyngeal;;Oropharyngeal
  • 中文刊名:ZGWS
  • 英文刊名:Chinese Journal of Microecology
  • 机构:深圳市儿童医院;重庆医科大学;
  • 出版日期:2019-04-15
  • 出版单位:中国微生态学杂志
  • 年:2019
  • 期:v.31
  • 基金:深圳市卫生系统科研项目(SXXJ2018043);; 深圳市医疗卫生三名工程项目(SXXJ2018043)
  • 语种:中文;
  • 页:ZGWS201904007
  • 页数:6
  • CN:04
  • ISSN:21-1326/R
  • 分类号:41-46
摘要
目的比较甲流(IA)患儿鼻咽部及口咽部菌群与健康儿童的差异,分析甲型流感病毒(IAV)感染后可能对儿童鼻咽部及口咽部菌群的影响。方法选取我院120例甲流患儿作为病例组,120例年龄性别相近的健康儿童作为健康组,采用高通量测序技术,对采集的所有鼻咽部及口咽部标本行16S rDNA基因测序分析,比较两组儿童间的菌群多样性及在门、属水平上菌群结构的差异。结果病例组鼻咽部及口咽部的菌群多样性均高于对照组(Ps<0.05)。在门水平上,两组儿童鼻咽部及口咽部的第一优势菌门均为厚壁菌门(Firmicutes)(Ps>0.05),病例组鼻咽部的变形菌门(Proteobacteria)相对丰度显著高于健康组(Ps<0.05);在鼻咽部菌属水平上,病例组中正常优势菌莫拉氏菌属(Moraxella)、棒状菌属(Corynebacterium)、狡诈菌属(Dolosigranulum)、普氏菌属(Prevotella)等的相对丰度显著减少(Ps<0.05),而链球菌属(Streptococcus)、嗜血杆菌属(Haemophilus)、盐单胞菌属(Halomonas)、不动杆菌属(Acinetobacter)、罗尔斯通菌属(Ralstonia)等的相对丰度显著增加(Ps<0.05),叶杆菌属(Phyllobacterium)仅见于病例组;在口咽部菌属水平上,病例组菌群相对减少的有奈瑟菌属(Neisseria)、乳杆菌属(Lactobacillus)等,而葡萄球菌属(Staphylococcus)、奇异菌属(Atopobium)、放线菌属(Actinomyces)等的相对丰度显著增加(Ps<0.05)。结论通过对甲流患儿进行上呼吸道菌群分析,揭示了甲流患儿鼻咽部及口咽部菌群的失调,这提示我们可从微生态角度研究甲流,从而进一步了解甲流的发病机制,为减少甲流严重并发症及病死率提供可能的理论依据。
        Objective To compare the differences in nasopharyngeal(NP) and oropharyngeal(OP) microflora between healthy children and those with influenza A(IA) and explore the possible effect of influenza A virus on children′s nasopharyngeal and oropharyngeal microbiota. Methods We recruited 120 children with influenza A(disease group) and 120 healthy children of the same age and sex(control group).NP and OP swabs were collected to conduct high-throughput sequencing and comparison of microbiota. Results The diversities of both NP and OP microflora were greater in the disease group.At the level of NP phylum,Firmicutes was the most dominant in both groups;Proteobacteria was more dominant in the disease group.At the level of NP genus,Moraxella,Corynebacterium,Dolosigranulum and Prevotella were less dominant while Streptococcus,Haemophilus,Halomonas,Acinetobacter and Ralstonia were more dominant in the disease group;Phyllobacterium was only detected in the disease group.At the level of OP genus,Neisseria and Lactobacillus were less dominant while Staphylococcus,Atopobium and Actinomyces were more dominant in the disease group.The differences between the two groups were all significant. Conclusion Children with influenza A showed disordered NP and OP microbiota,which may serve as another way for us to explore the mechanism of influenza,reduce the complications and lower the mortality.
引文
[1] Poehling KA, Edwards KM, Weinberg GA, et al. The underrecognized burden of influenza in young children[J] . N Engl J Med, 2006, 355(1): 31-40.
    [2] Kumar S, Havens PL, Chusid MJ, et al. Clinical and epidemiologic characteristics of children hospitalized with 2009 pandemic H1N1 influenza A infection[J]. Pediatr Infect Dis J, 2010, 29(7): 591-594.
    [3] Glezen WP. Prevention and treatment of seasonal influenza[J]. N Engl J Med, 2008, 359(24): 2579-2785.
    [4] Grohskopf LA, Sokolow LZ, Broder KR, et al. Prevention and control of seasonal influenza with vaccines: Recommendations of the advisory committee on immunization practices-United States, 2018-19 influenza season[J]. MMWR Recomm Rep, 2018, 67(3): 1-20.
    [5] Wang J, Jia H. Metagenome-wide association studies: fine-mining the microbiome[J]. Nat Rev Microbiol, 2016, 14(8): 508-522.
    [6] Cowling BJ, Chan KH, Fang VJ, et al. Comparative epidemiology of pandemic and seasonal influenza A in households[J]. N Engl J Med, 2010, 362(23): 2175-2184.
    [7] De SG, Rouleau I, Hamelin ME, et al. Contagious period for pandemic(H1N1)2009[J]. Emerg Infect Dis, 2010, 16(5): 783-788.
    [8] Kuss SK, Best GT, Etheredge CA, et al. Intestinal microbiota promote enteric virus replication and systemic pathogenesis[J]. Science, 2011, 334(6053): 249-252.
    [9] Kane M, Case LK, Kopaskie K, et al. Successful transmission of a retrovirus depends on the commensal microbiota[J]. Science, 2011, 334(6053): 245-249.
    [10] Handelsman J, Rondon MR, Brady SF, et al. Molecular biological access to the chemistry of unknown soil microbes: A new frontier for natural products[J]. Chem Biol, 1998, 5(10): R245-249.
    [11] DENG Zenghua, WANG Guangshun, ZHANG Chenggang. Research advances in respiratory microbiome and related diseases[J]. Mil Med Sci, 2015, 39(11): 873- 875. (in Chinese) 邓增华, 王广舜, 张成岗. 呼吸道微生物组与相关疾病研究进展[J]. 军事医学, 2015, 39(11): 873-875.
    [12] Bassis CM, Erb-Downward JR, Dickson RP, et al. Analysis of the upper respiratory tract microbiotas as the source of the lung and gastric microbiotas in healthy individuals[J]. MBio, 2015, 6(2): e00037.
    [13] 刘星, 王宇其, 王飞. 鼻后滴流综合征的中西医研究进展[J]. 湖南中医杂志, 2013, 29(11): 152-154.
    [14] LU Guoping, JIANG Qian. Identification of pulmonary fungal colonization and invasive fungal infection[J]. Chin Pediatr Emerg Med, 2016, 23(9): 585-588, 594. (in Chinese) 陆国平, 姜茜. 呼吸道真菌定植与侵袭性真菌感染的识别[J]. 中国小儿急救医学, 2016, 23(9): 585-588, 594.
    [15] SUN Lingling, LI Xiliang, LU Zhiwei, et al. Changes of oropharyngeal microbiota in children with Mycoplasma pneumoniae pneumonia[J]. Chin J Microecol, 2018, 30(6): 631-634. (in Chinese) 孙玲玲, 李喜亮, 卢志威, 等. 肺炎支原体肺炎患儿口咽部菌群的改变[J]. 中国微生态学杂志, 2018, 30(6): 631-634.
    [16] Lynch JP, Sikder MA, Curren BF, et al. The influence of the microbiome on early-life severe viral lower respiratory infections and asthma-food for thought?[J]. Front Immunol, 2017, 8: 156.
    [17] Rosas-Salazar C, Shilts MH, Tovchigrechko A, et al. Differences in the nasopharyngeal microbiome during acute respiratory tract infection with human rhinovirus and respiratory syncytial virus in infancy[J]. J Infect Dis, 2016, 214(12): 1924-1928.
    [18] Leung RK, Zhou JW, Guan W, et al. Modulation of potential respiratory pathogens by pH1N1 viral infection[J]. Clin Microbiol Infect, 2013, 19(10): 930-935.
    [19] Lu H, Li A, Zhang T, et al. Disordered oropharyngeal microbial communities in H7N9 patients with or without secondary bacterial lung infection[J]. Emerg Microbes Infect, 2017, 6(12): e112.
    [20] Greninger AL, Chen EC, Sittler T, et al. A metagenomic analysis of pandemic influenza A(2009 H1N1)infection in patients from North America[J]. PLoS One, 2010, 5(10): e13381.
    [21] Ninomiya-Mori A, Nukuzuma S, Suga T, et al. Genetic evidence for containment of viruses in the first outbreak of influenza A pandemic(H1N1)2009 in Kobe, Japan[J]. Influenza Other Respir Viruses, 2011, 5(3): 180-187.
    [22] Marri PR, Stern DA, Wright AL, et al. Asthma-associated differences in microbial composition of induced sputum[J]. J Allergy Clin Immunol, 2013, 131(2): 346-352, e1-3.
    [23] Bosch AATM, Levin E, Van HMA, et al. Development of upper respiratory tract microbiota in infancy is affected by mode of delivery[J]. EBioMedicine, 2016, 9: 336-345.
    [24] Charlson ES, Chen J, Custers-Allen R, et al. Disordered microbial communities in the upper respiratory tract of cigarette smokers[J]. PLoS One, 2010, 5(12): e15216.
    [25] Hedlund M, Aschenbrenner LM, Jensen K, et al. Sialidase-based anti-influenza virus therapy protects against secondary pneumococcal infection[J]. J Infect Dis, 2010, 201(7): 1007-1015.
    [26] XU Xingche, YUAN Xiaopeng, TANG Li, et al. Different antibiotic-driven changes in upper airway microbiota colonization in rats[J]. Chin J Microecol, 2015, 27(3): 253-255. (in Chinese) 徐星澈, 袁晓鹏, 唐立, 等. 不同抗生素对大鼠上呼吸道菌群定植影响的研究[J]. 中国微生态学杂志, 2015, 27(3): 253-255.
    [27] ZHANG Lixia, DANG Shuping, MA Juan, et al. Throat bacteria variation in respiratory tract infection after antibiotic therapy[J]. Chin J Nosocomiol, 2010, 20(6): 815-817. (in Chinese) 张利侠, 党淑萍, 马娟, 等. 呼吸道感染治疗后咽部菌群变化的研究[J]. 中华医院感染学杂志, 2010, 20(6): 815-817.
    [28] Charlson ES, Bittinger K, Haas AR, et al. Topographical continuity of bacterial populations in the healthy human respiratory tract[J]. Am J Respir Crit Care Med, 2011, 184(8): 957-963.
    [29] Biesbroek G, Sanders EAM, Roeselers G, et al. Deep sequencing analyses of low density microbial communities: Working at the boundary of accurate microbiota detection[J]. PLoS One, 2012, 7(3): e32942.
    [30] Morens DM, Taubenberger JK, Fauci AS. Predominant role of bacterial pneumonia as a cause of death in pandemic influenza: Implications for pandemic influenza preparedness[J]. J Infect Dis, 2008, 198(7): 962-970.
    [31] Cillóniz C, Ewig S, Menéndez R, et al. Bacterial co-infection with H1N1 infection in patients admitted with community acquired pneumonia[J]. J Infect, 2012, 65(3): 223-230.
    [32] Biesbroek G, Tsivtsivadze E, Sanders EAM, et al. Early respiratory microbiota composition determines bacterial succession patterns and respiratory health in children[J]. Am J Respir Crit Care Med, 2014, 190(11): 1283-1292.
    [33] Hasegawa K, Mansbach JM, Ajami NJ, et al. Association of nasopharyngeal microbiota profiles with bronchiolitis severity in infants hospitalised for bronchiolitis[J]. Eur Respir J, 2016, 48(5): 1329-1339.
    [34] van der Wouden JC, Bueving HJ, Poole P. Preventing influenza: An overview of systematic reviews[J]. Respir Med, 2005, 99(11): 1341-1349.
    [35] Heneghan CJ, Onakpoya I, Jones MA, et al. Neuraminidase inhibitors for influenza: A systematic review and meta-analysis of regulatory and mortality data[J]. Health Technol Assess, 2016, 20(42): 1-242.
    [36] WHO Global Influenza Programme. A manual for estimating disease burden associated with seasonal influenza[S]. Geneva: World Health Organization, 2015.
    [37] Hojsak I, Abdovic S, Szajewska H, et al. Lactobacillus GG in the prevention of nosocomial gastrointestinal and respiratory tract infections[J]. Pediatrics, 2010, 125(5): e1171-1177.
    [38] Morrow LE, Kollef MH, Casale TB. Probiotic prophylaxis of ventilator-associated pneumonia: A blinded, randomized, controlled trial[J]. Am J Respir Crit Care Med, 2010, 182(8): 1058-1064.
    [39] ZOU Yang, XIAO Chunling. Research progress of probiotics in prevention and treatment of respiratory tract infection[J]. China Mod Med, 2018, 25(10): 23-26. (in Chinese) 邹杨, 肖纯凌. 益生菌防治呼吸道感染的研究进展[J]. 中国当代医药, 2018, 25(10): 23-26.
    [40] WANG Wenjian. Application of probiotics in children with recurrent respiratory tract infections[J]. Chin J Pract Pediatr, 2017, 32(2): 117-120. (in Chinese) 王文建. 益生菌在儿童反复呼吸道感染中的应用[J]. 中国实用儿科杂志, 2017, 32(2): 117-120.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700