用户名: 密码: 验证码:
高比电容氮掺杂石墨烯的制备、组成及电化学性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation,composition and electrochemisty of high-specific capacitated graphene doped by nitrogen
  • 作者:蔚青 ; 李巧玲
  • 英文作者:Yu Qing;Li Qiaoling;Department of Chemistry,School of Science,North University of China;
  • 关键词:石墨烯 ; 丙酮肟 ; 氮掺杂 ; 高比电容
  • 英文关键词:graphene;;acetone ruthenium(DMKO);;nitrogen doping;;high specific capacitance
  • 中文刊名:HGXC
  • 英文刊名:New Chemical Materials
  • 机构:中北大学理学院化学系;
  • 出版日期:2019-02-15
  • 出版单位:化工新型材料
  • 年:2019
  • 期:v.47;No.557
  • 基金:国家自然科学基金项目(51272239)
  • 语种:中文;
  • 页:HGXC201902013
  • 页数:5
  • CN:02
  • ISSN:11-2357/TQ
  • 分类号:62-66
摘要
以氧化石墨烯(GO)为原料、丙酮肟(DMKO)为还原剂和掺氮剂,采用化学还原法制备了不同氮掺杂含量的石墨烯(N-RGO),并对制得的N-RGO进行表征。结果显示:DMKO能有效还原GO,且通过调节GO与DMKO的质量配合比,可以得到不同还原效果的N-RGO,其氮含量为3.51%~5.06%(原子分数)。GO与DMKO的质量配合比为1∶0.7条件下,掺氮率最高为5.06%,且氮元素主要以吡啶氮和吡咯氮的形式存在,二者含量之和占总掺氮形式的88.3%;电化学测试表明,N-RGO的比电容最大,在1A/g条件下,比电容达到250F/g,且经过1000次恒流充放电循环后比电容保留量为75%。N-RGO电极材料具有优异的电化学性能,在超级电容器领域有很好的应用前景。
        Nitrogen-doped graphene(N-RGO)was prepared by chemical reduction method using graphene oxide(GO)as raw material,acetone ruthenium(DMKO)as reducing agent and nitrogen-doping agent.The morphologies,structures,compositions and electrocatalytic activities of as-prepared material were characterized.The results showed that DMKO can effectively reduce GO,and by adjusting the mass mixing ratio of GO and DMKO,N-RGO with different reduction effects can be obtained,and its nitrogen content was 3.51%~5.06%(atomic fraction).The mass ratio of GO to DMKO was 1∶0.7,the uptake rate of nitrogen was up to 5.06%,and the nitrogen element was mainly in the form of pyridinium nitrogen and pyrrole nitrogen.The sum of two contents was accounts for 88.3% of total nitrogen-doped form.Electrochemical test showed that the specific capacitance of N-RGO was the largest.Under the condition of 1 A/g,the specific capacitance reached 250 F/g,and the specific capacitance reserve was 75% after 1000 constant current charge and discharge cycles.It indicatesd that N-RGO electrode materials had excellent electrochemical properties and good application prospects in the field of supercapacitors.
引文
[1]Dubal D P,Ayyad O,Ruiz V,et al.Hybrid energy storage:the merging of battery and supercapacitor chemistries[J].Chemical Society Reviews,2015,44(7):1777-1790.
    [2]Zhang Y Z,Wang Y,Cheng T,et al.Flexible supercapacitors based on paper substrates:a new paradigm for low-cost energy storage[J].Chemical Society Reviews,2015,44(15):5181-5199.
    [4]Gonzalez A,Goikolea E,Barrena J A,et al.Review on supercapacitors:technologies and materials[J].Renewable and Sustainable Energy Reviews,2016,58,1189-1206.
    [5]Chee W K,Lim Z,Zainal Z,et al.Flexible graphene-based supercapacitors:a review[J].The Journal of Physical Chemistry C,2016,120(8):4153-4172.
    [6]Beguin F,Presser V,Balducci A,et al.Carbons and electrolytes for advanced supercapacitors[J].Advanced Materials,2014,26(14):2219-2251.
    [7]Yang X W,Cheng C,Wang Y F,et al.Liquid-mediated dense integration of graphene materials for compact capacitive energy storage[J].Science,2013,341(6145):534-537.
    [8]Sun Y Q,Wu Q O,Shi G Q,et al.Graphene-based new energy materials[J].Energy and Environmental Science,2011,4(4):1113-1132.
    [9]Wang G Q,Zhang J,Kuang S,et al.Nitrogen-doped hierarchical porous carbon as an efficient electrode materials for supercapacitors[J].Electrochimica Acta,2015,153,273-279.
    [10]Tan Y M,Xu C F,Chen G X,et al.Synthesis of ultrathin nitrogen-doped graphitic carbon nanocages as advanced electrode materials for supercapacitors[J].ACS Applied Materials and Interfaces,2013,5(6):2241-2248.
    [11]Xu B,Duan H,Chu M,et al.Facile synthesis of nitrogendoped porous carbon for supercapacitors[J].Journal of Materials Chemistry A,2013,1(14):4565-4570.
    [12]Chen L F,Zhang X D,Liang H W,et al.Synthesis of nitrogendoped porous carbon nanofibers as efficient electrode materials for supercapacitors[J].ACS Nano,2012,6(8):7092-7102.
    [13]Lee W H,Moon J H.Monodispersed N-doped carbon nanospheres for supercapacitor application[J].ACS Applied Materials and Interfaces,2014,6(16):13968-13976.
    [14]Du F,Yu D S,Dai LM,et al.Preparation of tunable 3Dpillared carbon nanotube graphene networks for high-performance capacitance[J].Chemistry Materials,2011,23(21):4810-4816.
    [15]郭彬彬,文豪,康文彬,等.自支撑氮掺杂石墨烯纸柔性电极的制备及其储锂性能的研究[J].材料导报,2017,31(A1):292-296.
    [16]钟文斌,谭兮亦.高电化学性能三维网状氮掺杂石墨烯的制备[J].湖南大学学报(自然科学版),2016,43(6):53-57.
    [17]Fan L Z,Qiao S Y,Song W L,et al.Effects of the functional groups on the electrochemical properties of ordered porous carbon for supercapacitors[J].Electrochimica Acta,2013,105,299-304.
    [18]强朝辉.氮掺杂石墨烯/氢氧化镍复合电极材料的制备及其超级电容性能研究[D].北京,北京化工大学,2016.
    [19]Zhou M,Pu F,Wang Z,et al.Nitrogen-doped porous carbons through KOH activation with superior performance in supercapacitors[J].Carbon,2014,68,185-194.
    [20]Kim N D,Kim W,Joo J B,et al.Electrochemical capacitor performance of N-doped mesoporous carbons prepared by ammoxidation[J].Journal of Power Sources,2008,180(1):671-675.
    [21]严祥辉,蒙紫薇,李维勇,等.氮掺杂石墨烯用于碱性燃料电池产过氧化氢[J].现代化工,2017,37(5):62-66.
    [22]Gorgulho H F,Goncalves F,Pereira M F R,et al.Synthesis and characterization of nitrogen-doped carbon xerogels[J].Carbon,2009,47(8):2032-2039.
    [23]Sousa J P S,Pereira M F R,Figueiredo J L.NO oxidation over nitrogen doped carbon xerogels[J].Applied Catalysis B Environmental,2012,125,398-408.
    [24]Wickramaratne N P,Jaroniec M.Tailoring microporosity and nitrogen content in carbons for achieving high uptake of CO2at ambient conditions[J].Adsorption,2014,20(2/3):287-293.
    [25]Gao F,Qu J Y,Zhao Z B,et al.Nitrogen-doped activated carbon derived from prawn shells for high-performance supercapacitors[J].Electrochimica Acta,2016,190,1134-1141.
    [26]彭三,郭慧林,亢晓峰.氮掺杂石墨烯的制备及其对氧还原反应的电催化性能[J].物理化学学报,2014,30(9):1778-1786.
    [27]Marcano D C,Kosynkin D V,Berlin J M,et al.Improved synthesis of graphene oxide[J].ACS Nano,2010,4(8):4806-4814.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700