载体焙烧及螯合剂种类对火焰法制备碳纳米管质量的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of carrier calcination and chelating agent on the quality of CNTs prepared by flame
  • 作者:孙亚萍 ; 翟刚 ; 贾小伟 ; 郭永红 ; 孙保民 ; 康志忠
  • 英文作者:Sun Yaping;Zhai Gang;Jia Xiaowei;Guo Yonghong;Sun Baomin;Kang Zhizhong;Key Laboratory of Condition Monitoring and Control for Power Plant Equipment,North China Electric Power University;
  • 关键词:碳纳米管 ; V型火焰法 ; 载体焙烧 ; 螯合剂
  • 英文关键词:carbon nanotube;;V-type flame method;;carrier calcination;;chelating agent
  • 中文刊名:HGXC
  • 英文刊名:New Chemical Materials
  • 机构:华北电力大学电站设备状态监测与控制教育部重点实验室;
  • 出版日期:2019-06-15
  • 出版单位:化工新型材料
  • 年:2019
  • 期:v.47;No.561
  • 基金:国家科技支撑计划项目(2015BAA04B02);; 中央高校基本科研业务费专项资金(2018QN045)
  • 语种:中文;
  • 页:HGXC201906017
  • 页数:5
  • CN:06
  • ISSN:11-2357/TQ
  • 分类号:82-85+89
摘要
为了实现V型火焰法可控批量生产碳纳米管,以铁钼为活性中心,纳米Al_2O_3为载体,采用二次浸渍法合成Fe/Mo-Al_2O_3催化剂,研究载体焙烧及螯合剂对碳纳米管形态的影响。通过对不同催化剂合成的碳纳米管进行扫描电镜、透射电镜和拉曼光谱表征分析。结果表明:焙烧载体能够提高碳纳米管产量,促使小直径碳管的生成。柠檬酸作螯合剂能有效改善产品质量,形成长而细的碳纳米管。载体经过预处理并以柠檬酸为螯合剂制备的催化剂得到的碳纳米管产量高、缺陷少、平均直径小且管径分布窄。研究发现,载体焙烧及螯合剂种类影响碳纳米管的平均直径、直径分布及结晶度,可为调整碳纳米管性质提供简单且有效的途径。
        In order to realize mass and controllable fabrication of carbon nanotubes(CNTs)with V-type flame method,the Fe/Mo-Al_2 O_3 catalyst system were synthesized by the secondary impregnation method using iron and molybdenum as the active center and nano-Al_2 O_3 as the carrier,then the influences of the carrier calcination and the chelating agents on the morphology of CNTs were studied.The SEM,TEM and raman characterization results of CNTs synthesized by different catalysts showed that the calcined carrier could increase the yield of CNTs and promoted the formation of small diameter CNTs.Citric acid as a chelating agent can effectively improve the quality of CNTs,long and thin carbon nanotubes were formated.The CNTs synthesized using the catalyst with the carrier calcined and citric acid added as the chelating agent had higher yield,fewer defects,smaller average diameter and narrower tube diameter distribution.It was found that the carrier pretreatment and the type of chelating agent can impact the average diameter,diameter distribution and crystallinity of CNTs,which provided a simple and effective way to tune the properties of CNTs.
引文
[1]Iijima S.Helical microtubules of graphitic carbon[J].Nature,1991,354(6348):56-58.
    [2]Ray H B,Anvar A Z,Walt A D H.Carbon nanotubes-the route toward applications[J].Science,2002,297(5582):787-792.
    [3]王熙大,王志宁,高从堦.纳米复合膜在膜分离领域的研究进展[J].应用化学,2014,31(2):123-132.
    [4]Breuer O,Sundararaj U.Big returns from small fibers:a review of polymer/carbon nanotube composites[J].Polymer Composites,2004,25(6):630-645.
    [5]季益刚,印亚静,郭琦,等.碳纳米管载Pd-Au催化剂的合成及其对甲酸氧化的电催化性能[J].应用化学,2014,31(1):69-75.
    [6]Terrones M.Carbon nanotubes:synthesis and properties,electronic devices and other emerging applications[J].International Materials Reviews,2013,49(6):325-377.
    [7]章仁毅,张小燕,樊华军,等.基于碳纳米管的超级电容器研究进展[J].应用化学,2011,28(5):489-499.
    [8]Wang C,Waje M,Wang X,et al.Proton exchange membrane fuel cells with carbon nanotube based electrodes[J].Nano Letters,2004,4(2):345-348.
    [9]Mittal G,Dhand V,Rhee K Y,et al.A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites[J].Journal of Industrial and Engineering Chemistry,2015,21(1):11-25.
    [10]BiróL P,Horvath Z E H,Koós A A,et al.Direct synthesis of multi-walled and single-walled carbon nanotubes by spray-pyrolysis[J].Journal of Optoelectronics &Advanced Materials,2003,5(3):661-666.
    [11]Kónya Z,Vesselenyi I,Niesz K,et al.Large scale production of short functionalized carbon nanotubes[J].Chemical Physics Letters,2002,360(5):429-435.
    [12]强丁丁,赵建国,高利岩,等.微波辅助加热法在泡沫镍表面生长纳米碳管[J/OL].材料工程,2017,45(12):71-76.
    [13]Yuan L M,Saito K,Pan C X,et al.Nanotubes from methane flames[J].Chemical Physics Letters,2001,340(3):237-241.
    [14]Vander W R L.Flame synthesis of carbon nanotubes:premixed and diffusion flame configurations illustrating roles of gas composition and catalyst[J].MRS Online Proc Library,2013,1506:mrsf12-1506-y07-05.
    [15]Hu W C,Lin T H.Ethanol flame synthesis of carbon nanotubes in deficient oxygen environments[J].Nanotechnology,2016,27(16):165602-165612.
    [16]Annu A,Bhattacharya B,Singh P K,et al.Carbon nanotube using spray pyrolysis:recent scenario[J].Journal of Alloys and Compounds,2017,691:970-982.
    [17]Jia X L,Wei F.Advances in production and applications of carbon nanotubes[J].Topics in Current Chemistry,2017,375(1):18-53.
    [18]黄星亮,殷慧龄.载体预处理及焙烧温度对CuO/γ-Al2O3催化剂的影响[J].石油化工,1993,22(8):511-516.
    [19]薛飞,何纪敏,陈维苗,等.载体焙烧温度对Rh-Mn-Li/SBA-15催化CO加氢性能的影响[J].物理化学学报,2016,32(11):2769-2775.
    [20]Liu B L,Wu F Q,Gui H,et al.Chirality-controlled synthesis and applications of single-wall carbon nanotubes[J].Acs Nano,2017,11(1):31-53.
    [21]Kang L X,Hu Y,Zhong H,et al.Large-area growth of ultrahigh-density single-walled carbon nanotube arrays on sapphire surface[J].Nano Research,2015,8(11):3694-3703.
    [22]陈林涛,张振龙,白莹,等.在不同激发波长下的单壁碳纳米管的拉曼光谱研究[J].高等学校化学学报,2005,26(9):1665-1668.
    [23]Dresselhaus M S,Eklund P C.Phonons in carbon nanotubes[J].Advances In Physics,2000,49(6):705-814.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700