用户名: 密码: 验证码:
进水氨氮浓度对生物除磷颗粒系统的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Influent Ammonia Concentration on a Biological Phosphorus Removal Granules System
  • 作者:李冬 ; 曹美忠 ; 郭跃洲 ; 梅宁 ; 李帅 ; 张杰
  • 英文作者:LI Dong;CAO Mei-zhong;GUO Yue-zhou;MEI Ning;LI Shuai;ZHANG Jie;Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering,Beijing University of Technology;State Key Laboratory of Urban Water Resource and Environment,Harbin Institute of Technology;
  • 关键词:生物除磷颗粒 ; 氨氮浓度 ; 颗粒粒径 ; 胞外聚合物(EPS) ; PN/PS
  • 英文关键词:biological phosphorus removal granules;;ammonia concentration;;particle size;;extracellular polymeric substance(EPS);;PN/PS
  • 中文刊名:HJKZ
  • 英文刊名:Environmental Science
  • 机构:北京工业大学水质科学与水环境恢复工程北京市重点实验室;哈尔滨工业大学城市水资源与水环境国家重点实验室;
  • 出版日期:2018-10-15 16:46
  • 出版单位:环境科学
  • 年:2019
  • 期:v.40
  • 基金:北京市优秀青年拔尖团队项目(2014000026833TD02)
  • 语种:中文;
  • 页:HJKZ201903039
  • 页数:7
  • CN:03
  • ISSN:11-1895/X
  • 分类号:352-358
摘要
在SBR反应器中接种成熟的生物除磷颗粒,通过分阶段提高进水中氨氮浓度,研究了进水氨氮浓度对生物除磷颗粒系统的影响,确定系统对进水氨氮负荷的承受能力.结果表明,进水氨氮浓度低于45 mg·L~(-1)时,生物除磷颗粒系统具有良好的性能,TP去除率在96%以上,COD去除率在89%以上,出水TP浓度和COD浓度分别在0. 4 mg·L~(-1)和25 mg·L~(-1)以下,颗粒粒径在950μm以上,SVI在45 m L·g~(-1)以下;进水氨氮浓度为60 mg·L~(-1)时,TP去除率在95%以上,出水TP浓度在0. 5mg·L~(-1)以下,颗粒粒径为760μm,SVI为56 m L·g~(-1),系统中生物除磷颗粒出现部分解体,PAOs代谢和生长开始受到抑制.进水氨氮浓度达到70 mg·L~(-1)时,TP去除率为70%,出水TP浓度在3 mg·L~(-1)左右,颗粒粒径为570μm,SVI为75 m L·g~(-1),PN/PS值达到7. 50左右,系统中生物除磷颗粒严重解体,PAOs代谢和生长被严重抑制.随着进水氨氮浓度上升,导致生物除磷颗粒中微生物分泌蛋白质增加和多糖减少,PN/PS值增大,出现生物除磷颗粒解体,颗粒粒径减小和SVI上升,生物除磷颗粒的结构和功能被破坏.
        Mature biological phosphorus removal granules were inoculated into a SBR. The effect of the ammonia concentration on biological phosphorus removal granules system was investigated by increasing the concentration of ammonia in the influent. The ability of the system to withstand ammonia loading was determined. The results showed that when the influent ammonia concentration was below 45 mg·L~(-1),the biological phosphorus removal granule system showed good performance. The TP removal efficiency was above96%,the COD removal efficiency was over 89%. The effluent TP concentration and COD concentration were 0. 4 mg·L~(-1) and 25 mg·L~(-1) respectively. The particle size was above 950 μm and the SVI was below 45 m L·g~(-1). When the influent ammonia concentration was 60 mg·L~(-1),the removal efficiency of TP was more than 95%. The effluent TP concentration was below 0. 5 mg·L~(-1),the particle size was 760 μm,and the SVI was 56 m L·g~(-1). Furthermore,the biological phosphorus removal granules partially disintegrated and the metabolism and growth of PAOs began to be inhibited in the system. When the influent ammonia concentration reached 70 mg·L~(-1),the removal efficiency of TP was 70%,the effluent TP concentration was about 3 mg·L~(-1),the particle size was 570 μm,the SVI was 75 m L·g~(-1),and the value of PN/PS was about 7. 50. The biological phosphorus granules severely disintegrated and the metabolism and growth of PAOs was severely inhibited in the system. Moreover,as the influent ammonia concentration increased,the protein increased and polysaccharide decreased from the microbial secretion of biological phosphorus removal granules. Moreover,the value of PN/PS increased,the biological phosphorus removal granules disintegrated,the particle size decreased,the SVI increased,and the structure and function of the biological phosphorus removal granules were destroyed.
引文
[1]Mielczarek A T,Nguyen H T T,Nielsen J L,et al.Population dynamics of bacteria involved in enhanced biological phosphorus removal in Danish wastewater treatment plants[J].Water Research,2013,47(4):1529-1544.
    [2]李冬,吕育锋,张金库,等.SBR中曝气强度对除磷颗粒的影响[J].化工学报,2015,66(12):4994-5001.Li D,LüY F,Zhang J K,et al.Influence of aeration intensity on phosphorus removal granules in SBR[J].CIESC Journal,2015,66(12):4994-5001.
    [3]Li D,Lv Y F,Cao M Z,et al.Optimized hydraulic retention time for phosphorus and COD removal from synthetic domestic sewage with granules in a continuous-flow reactor[J].Bioresource Technology,2016,216:1083-1087.
    [4]Adav S S,Lee D J,Show K Y,et al.Aerobic granular sludge:recent advances[J].Biotechnology Advances,2008,26(5):411-423.
    [5]张小玲,刘珊,陈旭.有机负荷对除磷颗粒污泥的培养及特性的影响[J].环境科学,2011,32(7):2030-2035.Zhang X L,Liu S,Chen X.Effects of organic loading rate on the cultivation and characteristic of granular sludge with phosphorus removal[J].Environmental Science,2011,32(7):2030-2035.
    [6]Li D,Lv Y F,Zeng H P,et al.Enhanced biological phosphorus removal using granules in continuous-flow reactor[J].Chemical Engineering Journal,2016,298:107-116.
    [7]Fang J,Su B,Sun P D,et al.Long-term effect of low concentration Cr(VI)on P removal in granule-based enhanced biological phosphorus removal(EBPR)system[J].Chemosphere,2015,121:76-83.
    [8]Zhang B,Ji M,Qiu Z G,et al.Microbial population dynamics during sludge granulation in an anaerobic-aerobic biological phosphorus removal system[J].Bioresource Technology,2011,102(3):2474-2480.
    [9]Wu C Y,Peng Y Z,Wang S Y,et al.Enhanced biological phosphorus removal by granular sludge:from macro-to microscale[J].Water Research,2010,44(3):807-814.
    [10]刘小英,姜应和,郭超,等.COD对生物除磷颗粒污泥稳定性影响研究[J].环境工程学报,2011,5(4):807-811.Liu X Y,Jiang Y H,Guo C,et al.Influence of COD on phosphorus removal granular sludge stability[J].Chinese Journal of Environmental Engineering,2011,5(4):807-811.
    [11]Yu S J,Sun P D,Zheng W,et al.The effect of COD loading on the granule-based enhanced biological phosphorus removal system and the recoverability[J].Bioresource Technology,2014,171:80-87.
    [12]Li D,Lv Y F,Zeng H P,et al.Long term operation of continuous-flow system with enhanced biological phosphorus removal granules at different COD loading[J].Bioresource Technology,2016,216:761-767.
    [13]Li D,Lv Y F,Zeng H P,et al.Effect of sludge retention time on continuous-flow system with enhanced biological phosphorus removal granules at different COD loading[J].Bioresource Technology,2016,219:14-20.
    [14]Zheng X L,Sun P D,Luo J Q,et al.Inhibition of free ammonia to the granule-based enhanced biological phosphorus removal system and the recoverability[J].Bioresource Technology,2013,148:343-351.
    [15]Zheng X L,Sun P D,Luo J Q,et al.The long-term effect of nitrite on the granule-based enhanced biological phosphorus removal system and the reversibility[J].Bioresource Technology,2013,132:333-341.
    [16]国家环境保护总局.水和废水监测分析方法[M].(第四版).北京:中国环境科学出版社,2002.100-124.
    [17]Wang Z P,Liu L L,Yao J,et al.Effects of extracellular polymeric substances on aerobic granulation in sequencing batch reactors[J].Chemosphere,2006,63(10):1728-1735.
    [18]GB 18918-2002,城镇污水处理厂污染物排放标准[S].
    [19]Zeng W,Yang Y Y,Li L,et al.Effect of nitrite from nitritation on biological phosphorus removal in a sequencing batch reactor treating domestic wastewater[J].Bioresource Technology,2011,102(12):6657-6664.
    [20]徐少娟,蒋涛,殷峻,等.进水氨氮浓度对强化生物除磷(EBPR)系统除磷特性及微生物群落结构的影响[J].环境科学学报,2011,31(4):745-751.Xu S J,Jiang T,Yin J,et al.Effects of influent ammonia concentration on phosphorus removal and the microbial community in an EBPR system[J].Acta Scientiae Circumstantiae,2011,31(4):745-751.
    [21]Zou J T,Li Y M,Zhang L L,et al.Understanding the impact of influent nitrogen concentration on granule size and microbial community in a granule-based enhanced biological phosphorus removal system[J].Bioresource Technology,2015,177:209-216.
    [22]Sheng G P,Yu H Q,Li X Y.Extracellular polymeric substances(EPS)of microbial aggregates in biological wastewater treatment systems:a review[J].Biotechnology Advances,2010,28(6):882-894.
    [23]Liu H,Fang H H P.Extraction of extracellular polymeric substances(EPS)of sludges[J].Journal of Biotechnology,2002,95(3):249-256.
    [24]Liu Y Q,Liu Y,Tay J H.The effects of extracellular polymeric substances on the formation and stability of biogranules[J].Applied Microbiology and Biotechnology,2004,65(2):143-148.
    [25]李冬,曹美忠,郭跃洲,等.不同磷浓度下生物除磷颗粒系统的COD需求[J].环境科学,2018,39(7):3247-3253.Li D,Cao M Z,Guo Y Z,et al.COD requirement for biological phosphorus removal granule system under different phosphorus concentrations[J].Environmental Science,2018,39(7):3247-3253.
    [26]Yang S F,Tay J H,Liu Y.Inhibition of free ammonia to the formation of aerobic granules[J].Biochemical Engineering Journal,2004,17(1):41-48.
    [27]Tay J H,Liu Q S,Liu Y.The effects of shear force on the formation,structure and metabolism of aerobic granules[J].Applied Microbiology and Biotechnology,2001,57(1-2):227-233.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700