用户名: 密码: 验证码:
上转换荧光响应性复合纳米凝胶的制备及荧光能量传递行为
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation of Complex Nanogel with Up-conversion Fluorescence-responsive Performance and Its Fluorescence Energy Transfer Behavior
  • 作者:梁东磊 ; 宋秋生 ; 姚玉田 ; 刘贲
  • 英文作者:LIANG Donglei;SONG Qiusheng;YAO Yutian;LIU Ben;School of Chemistry and Chemical Engineering,Hefei University of Technology;
  • 关键词:稀土纳米晶 ; 上转换荧光响应性 ; 纳米凝胶 ; 荧光共振能量传递 ; 可逆加成断裂链转移聚合
  • 英文关键词:Rare earth nanocrystal;;Up-conversion fluorescence-responsive performance;;Nanogel;;Fluorescence resonance energy transfer;;Reversible addition-fragmentation chain transfer polymerization
  • 中文刊名:GDXH
  • 英文刊名:Chemical Journal of Chinese Universities
  • 机构:合肥工业大学化学与化工学院;
  • 出版日期:2019-03-10
  • 出版单位:高等学校化学学报
  • 年:2019
  • 期:v.40
  • 基金:合肥工业大学创新基金(批准号:2018CXCY218)资助~~
  • 语种:中文;
  • 页:GDXH201903024
  • 页数:9
  • CN:03
  • ISSN:22-1131/O6
  • 分类号:173-181
摘要
采用水热法合成Na YF_4∶Yb~(3+),Er~(3+)稀土纳米晶,再经3-苄基三硫代碳酸酯基丙酸(BSPA)修饰,制得功能化纳米晶体;以罗丹明6G(R6G)为母体荧光染料,经一系列反应合成了乙烯基功能化单体罗丹明6G酰基邻羧基苯甲肼腙(R6GHA);将功能化纳米晶体与R6GHA构成荧光共振能量传递(FRET)的"给体/受体"对,通过可逆加成断裂链转移(RAFT)聚合和"点击化学"反应,合成具有多重响应性复合荧光纳米凝胶NaYF_4∶Yb~(3+),Er~(3+)/PNIPAm-co-R6GHA.采用TEM,XRD,FTIR和DSC对产物的微观结构进行了表征;采用上转换荧光光谱(PL)研究了该复合纳米凝胶对p H值、环境温度和不同金属离子的荧光响应行为,并对相关机理进行了探讨.结果表明,环境温度变化对复合纳米凝胶的荧光发射具有显著影响,且该复合纳米凝胶对Hg~(2+)具有选择性荧光响应;在H+或Hg~(2+)作用下,复合纳米凝胶中纳米晶和R6GHA之间会发生荧光共振能量传递;通过纳米凝胶中纳米晶与R6GHA特征荧光发射峰比率的变化,实现对Hg~(2+)的检测.
        A functionalized NaYF4∶ Yb~(3+),Er~(3+)nanocrystal was prepared by hydrothermal method and decorated with 3-benzylsulfanylthio-carbonylsufanylpropionic acid( BSPA). Moreover, vinyl functional Rhodamine 6 G monomer( R6 GHA) was synthesized from rhodamine 6 G( R6 G) by a series of chemical reactions. Then,a novel complex fluorescent nanogel of NaYF4∶ Yb~(3+),Er~(3+)/PNIPAm-co-R6 GHA,which possesses multiple response,was prepared by reversible addition-fragmentation chain transfer( RAFT) polymerization and click reaction. In the as-prepared complex fluorescent nanogels,the functionalized nanocrystal and R6 GHA form donor/receptor pairs of fluorescence resonance energy transfer( FRET). The microstructure of the nanogels was characterized by transmission electron microscopy( TEM),X-ray diffraction( XRD),Fourier transform infrared spectroscopy( FTIR) and differential scanning calorimeter( DSC). The fluorescence response of the nanogel to p H value,ambient temperature and different metal ions were investigated by photoluminescence( PL) and the mechanism was discussed in detail. The results show that fluorescence emission of the nanogels is influenced greatly by environmental temperature,and the composite nanogels have selective fluorescence response to Hg~(2+). In the presence of H+or Hg~(2+),energy can transfer from the nanocrystals to R6 GHA moieties under 980 nm excitation. The detection of the concentration of Hg~(2+)can be achieved by the change of intensity ratio of characteristic fluorescence emission peaks of nanocrystals and R6 GHA moieties.
引文
[1] Koetting M. C.,Peters J. T.,Steichen S. D.,Peppas N. A.,Materials Science&Engineering R.,2015,93,1—49
    [2] Dai Y. L.,Ma P. A.,Cheng Z. Y.,Kang X. J.,Xiao Z.,Hou Z. Y.,Li C. X.,Yang D. M.,Zhai X. F.,Lin J.,Journal of AppliedPolymer Science,2013,131(4),1001—1007
    [3] Deng J. J.,Ping Y.,Wang Y. X.,Mao L. Q.,Analytical Chemistry,2015,87(5),3080—3086
    [4] Song N.,Chen D. X.,Qiu Y. C.,Yang X. Y.,Xu B.,Tian W.,Yang Y. W.,Chemical Communications,2014,50(60),8231—8234
    [5] Paek K.,Yang H.,Lee J.,Park J.,Kim B. J.,ACS Nano,2014,8(3),2848—2856
    [6] Chan H. P.,Yang H.,Lee J.,Cho H. H.,Kim D.,Lee D. C.,Kim B.,Chemistry of Materials,2015,27(15),5288—5294
    [7] Zhang Z.,Wang J.,Nie X.,Wen T.,Ji Y.,Wu X.,Zhao Y.,Chen C.,Journal of the American Chemical Society,2014,136(20),7317—7326
    [8] Liu X. Y.,Wang X. Q.,Zha L. S.,Lin D. L.,Yang J. M.,Zhou J. F.,Zhang L.,Journal of Materials Chemistry C,2014,2(35),7326—7335
    [9] Song Q. S.,Yang Y.,Gao K.,Ma H. H.,Journal of Luminescence,2013,136(4),437—443
    [10] Song Q. S.,Yang Y.,Zhu X. F.,Chem J. Chinese Universities,2012,33(5),1084—1089(宋秋生,杨洋,朱小飞.高等学校化学学报,2012,33(5),1084—1089)
    [11] Yang Y.,Song Q. S.,Gao K.,Ma H. H.,Yang S.,Li T.,Journal of Applied Polymer Science,2013,131(4),1001—1007
    [12] Jares-Erijman E. A.,Jovin T. M.,Nature Biotechnology,2003,21(11),1387—1395
    [13] Chen L.,Tse W. H.,Chen Y.,Mcdonald M. W.,Melling J.,Zhang J.,Biosensors&Bioelectronics,2016,91,393—399
    [14] Kim Y.,Namgung H.,Lee T. S.,Polymer Chemistry,2016,7(43),6655—6661
    [15] Mukherjee S.,Kar T.,Das P. K.,Chem Asian J.,2014,9(10),2798—2805
    [16] Belali S.,Emandi G.,Cafolla A. A.,O’Connell B.,Haffner B.,Mbius M. E.,Karimi A.,Senge M. O.,Photochem Photobiol Sci.,2017,16(11),1700—1708
    [17] Huang Y. Q.,Qin W. S.,Ren H. J.,Cao G. Y.,Liu X. F.,Huang W.,Chem. J. Chinese. Universities,2012,33(10),2213—2216(黄艳琴,秦伟胜,任厚基,曹国益,刘兴奋,黄维.高等学校化学学报,2012,33(10),2213—2216)
    [18] Zheng W.,Huang P.,Tu D.,Ma E.,Zhu H.,Chen X.,Chemical Society Reviews,2015,44(6),1379—1415
    [19] Guo Z.,Park S.,Yoon J.,Shin I.,Chemical Society Reviews,2014,43(1),16—29
    [20] SongQ. S.,Yang S. S.,Sheng R.,Li T.,Acta Chim. Sinica,2014,72,89—94(宋秋生,杨森森,盛锐,李谭.化学学报,2014,72,89—94)
    [21] Zhang Q. B.,Kong X. G.,Wang X.,Chen C.,Chem. J. Chinese. Universities,2014,35(2),224—229(张庆彬,孔祥贵,王新,程成.高等学校化学学报,2014,35(2),224—229)
    [22] An Z.,Xu Y.,Li Y.,Cao X.,Chen Q.,Polymer Chemistry,2014,5(21),6244—6255
    [23] Gai S.,Li C.,Yang P.,Lin J.,Chemical Reviews,2014,114(4),2343—2389
    [24] Hofmann C. H.,Plamper F. A.,Scherzinger C.,Hietala S.,Richtering W.,Macromolecules,2013,46(2),523—532
    [25] Chang L.,Gao Q.,Liu S.,Hu C.,Zhou W.,Zheng M.,Dyes&Pigments,2018,153,117—124
    [26] Zhang X. F.,Zhang Y.,Liu L.,Journal of Luminescence,2014,145(1),448—453
    [27] Maher M. J.,Yehl K.,Haque F.,Faint A.,Shimizu K. D.,Stephenson C. J.,Sensors&Actuators B:Chemical,2014,200(9),1—8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700