用户名: 密码: 验证码:
钛酸盐纳米管对水中氨氮的吸附特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Ammonium Adsorption Characteristics in Aqueous Solution by Titanate Nanotubes
  • 作者:张政 ; 冯长生 ; 张晓瑞 ; 郏建奎 ; 蒋彩云 ; 李攀杰 ; 王玉萍
  • 英文作者:ZHANG Zheng;FENG Chang-sheng;ZHANG Xiao-rui;JIA Jian-kui;JIANG Cai-yun;LI Pan-jie;WANG Yu-ping;Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control,School of Chemistry and Materials Science,Nanjing Normal University;Jiangsu Engineering and Research Center of Food Safety,School of Engineering and Technology,Jiangsu Institute of Commerce;
  • 关键词:钛酸盐纳米管 ; 吸附 ; 氨氮 ; 动力学 ; 吸附机制
  • 英文关键词:Titanate nanotubes;;adsorption;;ammonium;;kinetics;;adsorption mechanism
  • 中文刊名:HJKZ
  • 英文刊名:Environmental Science
  • 机构:南京师范大学化学与材料科学学院江苏省物质循环与污染控制重点实验室;江苏经贸职业技术学院工程技术学院江苏省食品安全工程技术研发中心;
  • 出版日期:2019-02-25 17:04
  • 出版单位:环境科学
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金项目(51578295);; 江苏省自然科学基金项目(BK20161479);; 江苏省高校自然科学研究项目(16KJB150043)
  • 语种:中文;
  • 页:HJKZ201907020
  • 页数:11
  • CN:07
  • ISSN:11-1895/X
  • 分类号:177-187
摘要
以P25和Na OH为原料,采用水热法制备钛酸盐纳米管(TNTs),利用X射线衍射(XRD)、透射电镜(TEM)对材料的组成和形貌进行表征,通过其对水中氨氮的静态吸附实验,考察TNTs对水中氨氮的吸附特性及规律.结果表明碱浓度为10mol·L-1时,可以获得管长约120 nm,管径约为8 nm的钛酸盐纳米管,其对氨氮的平衡吸附量达到10. 67 mg·g-1. p H值介于3~8时,TNTs能有效地吸附水中的氨氮.吸附过程在1 h基本达到平衡,符合准二级动力学方程.颗粒内扩散方程拟合结果发现,TNTs对氨氮的吸附过程由表面吸附和颗粒内扩散共同控制. Temkin方程能较好地描述TNTs对氨氮的吸附行为.热力学实验表明钛酸盐纳米管对氨氮的吸附是自发进行的吸热过程.共存阴阳离子对氨氮的吸附具有抑制作用,分别表现为SO_4~(2-)> Cl~-> H_2PO_4~-、K~+> Na~+> Ca~(2+).再生的钛酸盐纳米管对氨氮循环吸附5次仍有88. 64%的吸附效果.红外光谱(FT-IR)研究表明钛酸盐纳米管对氨氮的吸附机制是TNTs层间的Na~+与溶液中的NH_4~+之间发生离子交换.钛酸盐纳米管的优良循环使用性能和大吸附容量使得其能有效地去除水中氨氮.
        Titanate nanotubes( TNTs) were synthesized via a hydrothermal method using P25 and Na OH as the raw materials. The composition and morphology of the nanotubes were characterized by X-ray diffraction and transmission electron microscopy. The adsorption characteristics and the rules of ammonium in aqueous solutions were tested in the static system. The results showed that when the alkali concentration was 10 mol·L-1,titanate nanotubes with a length of approximately 120 nm and a diameter of approximately 8 nm were obtained. The equilibrium adsorption capacity of ammonium was 10. 67 mg·g-1. When the p H ranged between 3 and 8,TNTs effectively adsorbed ammonium. The equilibrium adsorption time was 1 h,and this followed the pseudo secondorder model. The results from the intra-particle model also showed that the adsorption process of ammonium by TNTs was controlled by surface adsorption and inter-particle diffusion. The Temkin model gave the best fit for the adsorption of ammonium onto TNTs. The thermodynamic experiments showed that the adsorption of titanate nanotubes on ammonium was a spontaneous endothermic process.Coexisting anions and cations had an inhibitory effect on the adsorption of ammonium. The order of influence was SO_4~(2-)> Cl~-> H_2PO_4-and K~+> Na~+> Ca~(2+),respectively. The adsorption effect of ammonium by regenerated TNTs remained more than 88. 64% after five repeat usages. The results of Fourier transform infrared spectroscopy showed that the ammonium adsorption mechanism of titanate nanotubes was ion-exchange between NH4+and Na+in the TNTs. Titanate nanotubes can effectively remove ammonium from water because of their good recycling capacity and large adsorption capacity.
引文
[1]徐璐. 2018年全国地表水环境质量优良比例同比提高[N].人民网,2019-01-07.
    [2]袁菊红,胡绵好,秦慧媛.烧烤竹炭表面结构特征及其对水体中铵氮的吸附行为[J].浙江农业学报,2014,26(1):165-170.Yuan J H,Hu M H,Qin H Y. Surface structure characteristics of barbecue bamboo charcoal and its adsorption behavior of ammonium from aqueous solution[J]. Acta Agriculturae Zhejiangensis,2014,26(1):165-170.
    [3]马锋锋,赵保卫,刁静茹,等.牛粪生物炭对水中氨氮的吸附特性[J].环境科学,2015,36(5):1678-1685.Ma F F,Zhao B W,Diao J R,et al. Ammonium adsorption characteristics in aqueous solution by dairy manure biochar[J].Environmental Science,2015,36(5):1678-1685.
    [4]陈杰山.吸附法在氨氮废水处理中的应用[J].广州化工,2017,45(13):11-13.Chen J S. Application of adsorption in treatment of ammonia nitrogen wastewater[J]. Guangzhou Chemical Industry,2017,45(13):11-13.
    [5]胡雪飞,黄万抚.氨氮废水处理技术研究进展[J].金属矿山,2017,(8):199-203.Hu X F,Huang W F. Research progress of ammonia nitrogen wastewater treatment technology[J]. Metal Mine,2017,(8):199-203.
    [6]王延梅.化学沉淀法处理高浓度氨氮废水[J].化工管理,2018,(32):174.
    [7]吴海忠.吹脱法处理高氨氮废水关键因素研究进展[J].绿色科技,2013,(2):144-146.
    [8]章启帆,李勇,徐婷,等.次氯酸钠催化氧化法处理氨氮废水的研究[J].无机盐工业,2018,50(1):52-56.Zhang Q F,Li Y,Xu T,et al. Study on treating ammonianitrogen wastewater with catalytic oxidation of Na ClO[J].Inorganic Chemicals Industry,2018,50(1):52-56.
    [9]李丹,沈存花,刘佛财,等.低浓度氨氮废水处理技术研究进展[J].应用化工,2018,47(6):1274-1280.Li D,Shen C H,Liu F C,et al. Progress in the treatment technology of low-concentration ammonium-nitrogen water[J].Applied Chemical Industry,2018,47(6):1274-1280.
    [10]田琳,孔强,任宗明,等.活性炭和沸石对氨氮的吸附特性及生物再生[J].环境工程学报,2012,6(10):3424-3428.Tian L,Kong Q,Ren Z M,et al. Adsorption characteristics of activated carbon and zeolite and their biological regeneration[J].Chinese Journal of Environmental Engineering,2012,6(10):3424-3428.
    [11]李飞跃,谢越,石磊,等.稻壳生物质炭对水中氨氮的吸附[J].环境工程学报,2015,9(3):1221-1226.Li F Y,Xie Y,Shi L,et al. Adsorption of ammonia nitrogen in wastewater using rice husk derived biochar[J]. Chinese Journal of Environmental Engineering,2015,9(3):1221-1226.
    [12]安莹,王志伟,张一帆,等.天然沸石吸附氨氮的影响因素[J].环境工程学报,2013,7(10):3927-3932.An Y,Wang Z W, Zhang Y F, et al. Factors influencing ammonium removal by natural zeolite as adsorbent[J]. Chinese Journal of Environmental Engineering,2013,7(10):3927-3932.
    [13]张广兴,邵红,李云娇,等.复合改性膨润土对氨氮废水的吸附及脱附[J].环境工程学报,2017,11(3):1494-1500.Zhang G X,Shao H,Li Y J,et al. Adsorption and desorption of ammonia-nitrogen wastewater by modified bentonite[J]. Chinese Journal of Environmental Engineering,2017,11(3):1494-1500.
    [14]郜玉楠,周历涛,王静,等.壳聚糖包覆沸石分子筛处理微污染水中的氨氮[J].环境工程,2018,36(12):108-112,176.
    [15]陈一萍,刘姣.碳纳米管处理氨氮废水的研究[J].工业安全与环保,2014,40(3):24-26,30.Chen Y P,Liu J. Research on the adsorptive removal of NH3-N from wastewater by CNTs[J]. Industrial Safety and Environmental Protection,2014,40(3):24-26,30.
    [16]雷立,李学钊,晋银佳,等.温和水热法合成钛酸盐纳米管及其对水中重金属离子的吸附研究[J].环境科学学报,2016,36(5):1663-1671.Lei L,Li X Z,Jin Y J,et al. Synthesis of titanate nanotubes through a facile hydrothermal method and their adsorption behaviors for heavy metal ions from waters[J]. Acta Scientiae Circumstantiae,2016,36(5):1663-1671.
    [17] Zamora B,Al-Hajjaj A A,Shah A A,et al. Kinetic and thermodynamic studies of hydrogen adsorption on titanate nanotubes decorated with a Prussian blue analogue[J].International Journal of Hydrogen Energy,2013,38(15):6406-6416.
    [18] Huang N,Xie Y N,Sebo B,et al. Morphology transformations in tetrabutyl titanate-acetic acid system and sub-micron/micron hierarchical Ti O2for dye-sensitized solar cells[J]. Journal of Power Sources,2013,242:848-854.
    [19] Yadav B C,Yadav A,Singh S,et al. Nanocrystalline zinc titanate synthesized via physicochemical route and its application as liquefied petroleum gas sensor[J]. Sensors and Actuators B:Chemical,2013,177:605-611.
    [20] Wang T,Liu W,Xu N,et al. Adsorption and desorption of Cd(II)onto titanate nanotubes and efficient regeneration of tubular structures[J]. Journal of Hazardous Materials,2013,250-251:379-386.
    [21]常永芳.生物分子辅助合成钛酸盐/Ti O2纳米材料及净水性能研究[D].石家庄:河北师范大学,2015.Chang Y F. Synthesis of Titanate/Ti O2nanocomposites by biological molecules-assisted and their performance for water purification[D]. Shijiazhuang:Hebei Normal University,2015.
    [22]陈丽茹.钛酸盐纳米材料去除水中重金属离子的研究[D].福州:福州大学,2015.Chen L R. Effective removal of heavy metal ions from water system using titanate nanomaterials[D]. Fuzhou:Fuzhou University,2015.
    [23]贺充恺.钛酸盐纳米材料的制备及其在去除水体重金属离子中的应用[D].海口:海南大学,2017.He C K. Preparation of Titanate nanomaterials and their removal of heavy metal ions from aqueous solution[D]. Haikou:Hainan University,2017.
    [24]康达莲,赵昌平,赵杰,等.水中氨氮的测定及影响因素探讨[J].广州化工,2017,45(2):91-92.Kang D L,Zhao C P,Zhao J,et al. Study on determination of ammonia nitrogen in water and its influence factors[J].Guangzhou Chemical Industry,2017,45(2):91-92.
    [25]张政,郏建奎,蒋彩云,等. Na OH浓度对水热合成Ti O2纳米管形成及光催化性能的影响[J].南京师大学报(自然科学版),2018,41(3):52-58.Zhang Z, Jia J K, Jiang C Y, et al. Effect of Na OH concentration on formation and photocatalytic performance of Ti O2nanotubes prepared by hydrothermal method[J]. Journal of Nanjing Normal University(Natural Science Edition),2018,41(3):52-58.
    [26]范功端,陈丽茹,林茹晶,等.合成时间对钛酸盐纳米材料的影响及其吸附水中铅的性能研究[J].环境科学,2016,37(2):668-679.Fan G D,Chen L R,Lin R J,et al. Influence of reaction time on titanate nanomaterials and its adsorption capability for lead in aqueous solutions[J]. Environmental Science,2016,37(2):668-679.
    [27] Xiong L,Yang Y,Mai J X,et al. Adsorption behavior of methylene blue onto titanate nanotubes[J]. Chemical Engineering Journal,2010,156(2):313-320.
    [28] Manfroi D C,dos Anjos A,Cavalheiro A A,et al. Titanate nanotubes produced from microwave-assisted hydrothermal synthesis:Photocatalytic and structural properties[J]. Ceramics International,2014,40(9):14483-14491.
    [29]龚强,江志东,田峰,等.水热条件下钛酸钠盐纳米晶须与纳米管的选择制备[J].材料科学与工程学报,2007,25(1):43-47,78.Gong Q,Jiang Z D,Tian F,et al. Selective preparation of sodium titanate nano-fibers or nano-tubes under hydrothermal conditions[J]. Journal of Materials Science&Engineering,2007,25(1):43-47,78.
    [30]王美丽,宋功保,李健,等.水热法制备钛酸盐纳米管的研究进展[J].材料导报,2006,20(S2):121-123,129.Wang M L,Song G B,Li J,et al. Study progress of Ti O2nanotube prepared in hydrothermal method[J]. Materials Review,2006,20(S2):121-123,129.
    [31]刘松.钢中C元素EDS分析准确度的影响因素[J].失效分析与预防,2014,9(2):71-74.Liu S. Analysis of factors influencing accuracy of EDS on carbon element in steel[J]. Failure Analysis and Prevention,2014,9(2):71-74.
    [32]刘海伟,刘云,王海云,等. pH和共存阳离子对草莓茎吸附水体氨氮的影响[J].环境科学,2010,31(8):1884-1889.Liu H W,Liu Y,Wang H Y,et al. Effects of pH and coexisting cations on ammonia adsorption from aqueous solution by strawberry stem powder[J]. Environmental Science,2010,31(8):1884-1889.
    [33]刘超,杨永哲,宛娜.粉煤灰砖块对磷酸盐的吸附特性[J].环境工程学报,2014,8(5):1711-1717.Liu C,Yang Y Z,Wan N. Adsorptive characteristics of fly ash blocks to phosphate[J]. Chinese Journal of Environmental Engineering,2014,8(5):1711-1717.
    [34]孟建.壳聚糖衍生吸附材料的制备及其对印染废水的吸附研究[D].太原:中北大学,2018.Meng J. Preparation of chitosan-derived adsorption materials and their adsorption to dye wastewater[D]. Taiyuan:North University of China,2018.
    [35]梁丽珍,李庆召.改性废砖对氨氮的吸附性能研究[J].水处理技术,2014,40(12):52-55.Liang L Z,Li Q Z. Study on adsorption performance of ammonia nitrogen by modified waste-brick[J]. Technology of Water Treatment,2014,40(12):52-55.
    [36]李文静,李军,张彦灼,等. Na Cl改性沸石对水中氨氮的吸附机制[J].中国环境科学,2016,36(12):3567-3575.Li W J,Li J,Zhang Y Z,et al. Adsorption mechanism of ammonium from aqueous solutions by Na Cl modified zeolite[J].China Environmental Science,2016,36(12):3567-3575.
    [37] Dong Y B,Lin H. Ammonia nitrogen removal from aqueous solution using zeolite modified by microwave-sodium acetate[J].Journal of Central South University, 2016, 23(6):1345-1352.
    [38]刘雪梅,陈嘉玮,王宇航.碳酸钾改性油茶壳活性炭吸附水中氨氮的研究[J].工业水处理,2017,37(7):39-42.Liu X M,Chen J W,Wang Y H. Study on potassium carbonate?modified camellia shell activated carbon for the adsorption of ammonia nitrogen in water[J]. Industrial Water Treatment,2017,37(7):39-42.
    [39]刘莹,刘晓晖,张亚茹,等.三种人工湿地填料对低浓度氨氮废水的吸附特性[J].环境化学,2018,37(5):1118-1127.Liu Y,Liu X H,Zhang Y R,et al. Adsorption properties of low concentration ammonia nitrogen wastewater by three constructed wetland fillers[J]. Environmental Chemistry,2018,37(5):1118-1127.
    [40]李廷梅,于鲁冀,叶露阳,等.改性玉米芯表面特征及其对氨氮的吸附作用研究[J].环境工程,2018,36(1):42-46.Li T M,Yu L J,Ye L Y,et al. Surface characteristics of modified corncob and its adsorption capacity of ammonia[J].Environmental Engineering,2018,36(1):42-46.
    [41] Tu Y N,Feng P,Ren Y G,et al. Adsorption of ammonia nitrogen on lignite and its influence on coal water slurry preparation[J]. Fuel,2019,238:34-43.
    [42]王文东,刘荟,张银婷,等.新型污泥基吸附材料制备及其氨氮去除性能评价[J].环境科学,2016,37(8):3186-3191.Wang W D,Liu H,Zhang Y T,et al. Preparation and NH4+-N removal performance of a novel filter substrate made from sludges[J]. Environmental Science,2016,37(8):3186-3191.
    [43]张家利.天然及改性沸石去除水中氨氮的试验研究[D].兰州:兰州交通大学,2014.Zhang J L. Study of removing ammonia nitrogen with natural and modified zeolite from water[D]. Lanzhou:Lanzhou Jiaotong University,2014.
    [44]丛日环,李小坤,鲁剑巍.土壤钾素转化的影响因素及其研究进展[J].华中农业大学学报,2007,26(6):907-913.Cong R H,Li X K,Lu J W. Advances in research on influence factors of soil potassium transformation[J]. Journal of Huazhong Agricultural University,2007,26(6):907-913.
    [45]王艺.煤/聚乙烯亚胺交联复合螯合吸附剂的制备及性能研究[D].西安:西安科技大学,2015.Wang Y. Study on preparation and performance of the coal/PEI crosslinked composite chelating adsorbent[D]. Xian:Xi'an University of Science and Technology,2015.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700