用户名: 密码: 验证码:
油液金属颗粒对500kV变压器出线装置电场的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of Oil Metallic Particles on Electric Field of 500kV Transformer Outlet Device
  • 作者:朱文 ; 赵晓凤
  • 英文作者:ZHU Wen;ZHAO Xiaofeng;School of Electric Power,South China University of Technology;Electric Power Research Institute of Guangdong Power Grid Co.,Ltd.;
  • 关键词:变压器 ; 出线装置 ; 金属颗粒 ; 有限元 ; 电场仿真
  • 英文关键词:transformer;;outlet device;;metallic particle;;finite element;;electric field simulation
  • 中文刊名:GDDL
  • 英文刊名:Guangdong Electric Power
  • 机构:华南理工大学电力学院;广东电网有限责任公司电力科学研究院;
  • 出版日期:2018-07-25
  • 出版单位:广东电力
  • 年:2018
  • 期:v.31;No.245
  • 基金:国家工程实验室开放基金项目(NEL201603)
  • 语种:中文;
  • 页:GDDL201807019
  • 页数:7
  • CN:07
  • ISSN:44-1420/TM
  • 分类号:119-125
摘要
近年来发生多起由出线装置绝缘击穿引起的变压器事故,初步分析表明油液金属颗粒度超标是上述事故的主要原因之一。通过建立考虑油液金属颗粒的500 kV交流变压器出线装置三维电场有限元仿真模型,研究金属颗粒尺寸和位置对出线装置电场的影响;同时,在考虑金属颗粒的情况下,研究均压球圆弧结构和油隙宽度对变压器绝缘的影响,并初步提出优化措施。结果表明:油液金属颗粒的存在可增大出线装置油隙间的最大场强,该最大场强随颗粒半径的增加而增大,甚至大于油隙许用值引起局部微放电;金属颗粒在交流电场下的振荡及放电产生的气泡可加剧电场畸变,并加速绝缘劣化进程;增大均压球圆弧半径和油隙宽度可在一定程度上降低金属颗粒作用下油隙间的最大场强,并提高油隙的绝缘裕度,可为事故分析及处理提供参考。
        In recent years,there have been many transformer accidents caused by insulation breakdown of the outlet device.The preliminary analysis shows one of the main reasons for those accidents are excessive oil metallic particles.To solve this problem,this paper builds a 3D finite element simulation model for electric field of the outlet device of 500 kV AC transformer which considers oil metallic particles,and studies influence of sizes and locations of metallic particles on electric field of the outlet device.Meanwhile,in the case of considering metallic particles,it studies influence of circular arc structure of the pressure equalizing ball and oil gap width on transformer insulation and proposes optimization measures initially.The results indicate oil metallic particles may increase the maximum field intensity between oil gaps of the outlet device and the maximum field intensity may increase with increase of particle radius,or even the maximum field intensity is so greater than the allowable value that may cause partial micro-discharge.Meanwhile,vibration of metallic particles in AC electric field and bubbles produced by discharging will intensify distortion of electric field and accelerate degradation process of insulation.In addition,it is able to reduce the maximum field intensity between oil gaps under the effect of metallic particles and improve insulation margin of the oil gap by increasing circular arc radius of the pressure equalizing ball and the oil gap width,which may provide references for accident analysis.
引文
[1]王义平.主变压器变损率对电气设备潜在性故障的预判特性[J].广东电力,2016,29(6):82-86.WANG Yiping.Pre-juegement characteristic of main transformer power loss rate in potential faults of electrical equipments[J].Guangdong Electric Power,2016,29(6):82-86.
    [2]刘世欣,韩玮琦,杨志刚,等.500 kV电力变压器内部过热故障分析及处理[J].内蒙古电力技术,2017,35(3):90-92.LIU Shixin,HAN Weiqi,YANG Zhigang,et al.Analysis and processing of internal overheat fault of 500 kV transformer[J].Inner Mongolia Electric Power,2017,35(3):90-92.
    [3]OMMEN T V,PETRIE E M,Particle contamination levels in oil-filled large power transformers[J].IEEE Transactions on Power Apparatus and Systems,1983,102(5):1459-1465.
    [4]BIRLASEKARAN S,DARVENIZA M.Microdischarges from particles in transformer oil[J].IEEE Transactions on Electrical Insulation,1976,11(4):162-163.
    [5]CAI W,ZHANG C H,ZHANG M J,et al.Discharge characteristics and mechanism of conductive metal particles in function of the oil flow under AC voltages[J].IEEE Transactions on Dielectrics and Electrical Insulation,2017,24(1):268-278.
    [6]TANG J,MA S X,LI X,et al.Impact of velocity on partial discharge characteristics of moving metal particles in transformer oil using UHF technique[J].IEEE Transactions on Dielectrics and Electrical Insulation,2016,23(4):2207-2212.
    [7]ARCHANA M,SARATHI R.Investigation of partial discharge activity by a conducting particle in transformer oil under harmonic AC voltages adopting UHF technique[J].IEEE Transactions on Dielectrics and Electrical Insulation,2012,19(5):1514-1520.
    [8]LI J H,HU Q W,ZHAO X F,et al.Partial-discharge characteristics of free spherical conducting particles under AC condition in transformer oils[J].IEEE Transactions on Dielectrics and Electrical Insulation,2011,18(2):538-546.
    [9]DL/T1096—2008,变压器油中颗粒度限值[S].北京:中国电力出版社,2008.
    [10]刘东升,张海蛟,赵丽杰,等.交流750 kV变压器出线装置国产化核心技术[J].电工技术学报,2011,26(2):88-93.LIU Dongsheng,ZHANG Haijiao,ZHAO Lijie,et al.Homemade core technology of 750 kV transformer outlet device[J].Transactions of China Electrotechnical Society,2011,26(2):88-93.
    [11]王凯,张喜乐,张栋,等.交流1 000 kV变压器出线装置绝缘结构分析[J].变压器,2016,53(7):22-28.WANG Kai,ZHANG Xile,ZHANG Dong,et al.Analysis of outlet insulating structure of 1 000 kV transformer[J].Transformer,2016,53(7):22-28.
    [12]宓传龙,谢庆峰,孟丽坤,等.超、特高压交流变压器出线绝缘结构的设计和应用[J].高电压技术,2010,36(1):122-128.MI Chuanlong,XIE Qingfeng,MENG Likun,et al.Design and application of exits insulation structure for EHV and UHV AC transformers[J].High Voltage Engineering,2010,36(1):122-128.
    [13]郑劲,文闿成.超、换流变压器阀侧套管出线装置绝缘分析[J].高电压技术,2010,36(5):1184-1190.ZHENG Jin,WEN Kaicheng.Development of insulating technology of valve-side outlet device in converter transformers[J].High Voltage Engineering,2010,36(5):1184-1190.
    [14]WEN K C,ZHOU Y B,FU J,et al.A calculation method and some features of transient field under polarity reversal voltage in HVDC insulation[J].IEEE Transactions on Power Delivery,1993,8(1):223-230.
    [15]陈庆国,候帅,池明赫,等.换流变压器出线装置电场分布与绝缘结构优化[J].高电压技术,2013,39(12):2859-2868.CHEN Qingguo,HOU Shuai,CHI Minghe,et al.Electric field distribution in converter transformer outlet device and its insulation structure optimization[J].High Voltage Engineering,2013,39(12):2859-2868.
    [16]陈文会,李忠,景占荣,等.基于有限元法的含固定微粒的GIS静电场分析[J].高电压技术,2006,32(1):16-17.CHEN Wenhui,LI Zhong,JING Zhanrong,et al.Static electric field analyses of GIS including fixed particle based on finite element method[J].High Voltage Engineering,2006,32(1):16-17.
    [17]李世琼,裴长生,王泽忠,等.金属颗粒对LW 13-550罐式断路器电场的影响分析[J].高压电器,2011,47(10):115-120.LI Shiqiong,PEI Changsheng,WANG Zezhong,et al.Influence of metallic particulates to 3D electric field of LW13-550 tank circuit breaker[J].High Voltage Apparatus,2011,47(10):115-120.
    [18]付守海,王淑娟,王景春.变压器油中导电颗粒运动轨迹的计算[J].现代电力,1999,16(2):30-37.FU Shouhai,WANG Shujuan,WANG Jingchun.Calculation of particles moving traces in transformer oil[J].Modern Electric Power,1999,16(2):30-37.
    [19]倪光正.工程电磁场原理[M].2版.北京:高等教育出版社,2009.
    [20]GB1094.3—2003,电力变压器第3部分:绝缘水平、绝缘试验和外绝缘空气间隙[S].北京:中国标准出版社,2003.
    [21]谢毓城.电力变压器手册[M].北京:机械工业出版社,2003.
    [22]周远翔,沙彦超,聂德鑫,等.交直流复合电压下油中局部放电的起始过程[J].高电压技术,2012,38(5):1163-1171.ZHOU Yuanxiang,SHA Yanchao,NIE Dexin,et al.Partial discharge initiating process of transformer oil under combined AC and DC voltage[J].High Voltage Engineering,2012,38(5):1163-1171.
    [23]张国强.电力变压器绝缘结果优化和电磁方案自动设计的研究[D].保定:华北电力大学,2000.
    [24]KATTAN R,DENAT A,BONIFACI N.Formation of vapor bubbles in nonpolar liquids initiated by current pulses[J].IEEE Transactions on Electrical Insulation,1991,26(4):656-662.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700