用户名: 密码: 验证码:
太阳能光伏发电-辐射制冷建筑一体化复合装置的性能分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:PERFORMANCE ANALYSIS OF BUILDING INTEGRATED COMPOSITE APPARATUS FOR BOTH SOLAR PHOTOVOLTAIC AND RADIATIVE COOLING
  • 作者:赵斌 ; 胡名科 ; 敖显泽 ; 裴刚
  • 英文作者:Zhao Bin;Hu Mingke;Ao Xianze;Pei Gang;Department of Thermal Science and Energy Engineering,University of Science and Technology of China;
  • 关键词:光伏发电 ; 辐射制冷 ; 建筑一体化 ; 光谱选择性
  • 英文关键词:solar photovoltaic;;radiative cooling;;building integration;;spectral selectivity
  • 中文刊名:TYLX
  • 英文刊名:Acta Energiae Solaris Sinica
  • 机构:中国科学技术大学热科学和能源工程系;
  • 出版日期:2019-05-28
  • 出版单位:太阳能学报
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金(51476159);; 东莞市引进创新科研团队计划(2014607101008);; 国家科技支撑计划(2015BAD19B02);; 安徽省科技厅国际科技合作计划(BJ2090130038)
  • 语种:中文;
  • 页:TYLX201905012
  • 页数:9
  • CN:05
  • ISSN:11-2082/TK
  • 分类号:81-89
摘要
一种光谱选择性复合板芯同时具有太阳能光伏发电和辐射制冷2种功能,在光电转换波段(0.2~1.1μm)和辐射制冷波段(8~13μm)具有高发射比,而在其余辐射波段具有低发射比。基于该复合板芯设计一种太阳能光伏发电-辐射制冷建筑一体化复合装置,该装置具有白天光伏发电和夜间辐射制冷2种功能。建立复合装置的数学模型,对该复合装置在夏季炎热潮湿地区(中国合肥)和炎热干燥地区(埃及Kharga)的光电性能和辐射制冷性能进行数值模拟。计算结果表明:在中国合肥和埃及Kharga,晴天条件下复合装置夏季白天平均光电功率可达74.60和91.00 W/m~2,夜间平均制冷功率分别为42.46和57.24 W/m~2,全天能量收益达3.37和4.27 MJ/m~2,分别比传统光伏装置的全天能量收益高53.78%和56.70%。
        A spectral selectivity absorber for both solar photovoltaic and radiative cooling was proposed. It has a high spectral emittance in photovoltaic conversion band and atmospheric window band(i.e. 0.2-1.1 μm and 8-13 μm),as well as a low emittance in the other band. Then a building integrated composite apparatus for both solar photovoltaic and radiative cooling was proposed based on the spectral absorber. It has two kinds of functions for both diurnal solar photovoltaic and nocturnal radiative cooling. Mathematic model was established,then numerical analysis was conducted to study the solar photovoltaic and radiative cooling performance of the composite apparatus in hot-moist areas(i.e.Hefei,China)and hot-dry areas(i.e. Kharga,Egypt). The results showed that in Hefei and Kharga,the average electric power reached 74.60 and 91.00 W/m~2,respectively,and the average nocturnal radiative cooling power reached 42.46 and 57.24 W/m~2,respectively,and the day energy gain reached 3.37 and 4.27 MJ/m~2,respectively,which are 58.76%and 61.10%,respectively,higher than traditional PV modules.
引文
[1] Lee Hyu Mun,Yoon Jong Ho,Kim Seung Chul,et al.Operational power performance of south-facing vertical BIPV window system applied in office building[J]. Solar Energy,2017,145:66—77.
    [2] Assoa Y B,Menezo C,Fraisse G,et al. Study of a new concept of photovoltaic-thermal hybrid collector[J].Solar Energy,2007,81(9):1132—1143.
    [3] Lin Wenye, Ma Zhenjun, Sohel M I, et al.Development and evaluation of a ceiling ventilation system enhanced by solar photovoltaic thermal collectors and phase change materials[J]. Energy Conversion and Management,2014,88:218—230.
    [4] Hu Mingke,Pei Gang,Li Lei,et al. Theoretical and experimental study of spectral selectivity surface for both solar heating and radiative cooling[J]. International Journal of Photoenergy,2015,(2):1—9.
    [5]芮智刚,左然.太空辐射制冷空调装置的实验研究[J].制冷学报,2010,31(4):57—62.[5] Rui Zhigang,Zuo Ran. Experimental study on airconditioning plant with space radiative cooling[J].Journal of Refrigeration,2010,31(4):57—62.
    [6] Bagiorgas H S, Mihalakakou G. Experimental and theoretical investigation of a nocturnal radiator for space cooling[J]. Renewable Energy,2008,33(6):1220—1227.
    [7] Pei Gang,Fu Huide,Zhu Huijuan,et al. Performance study and parametric analysis of a novel heat pipe PV/T system[J]. Energy,2012,37(1):384—395.
    [8]葛新石,孙孝兰.辐射致冷及辐射体的光谱选择性对致冷效果的影响[J].太阳能学报,1982,3(2):128—136.[8] Ge Xinshi,Sun Xiaolan. Radiative cooling and the effect of spectral selective characteristics of the radiator on cooling performance[J]. Acta Energiae Solaris Sinica,1982,3(2):128—136.
    [9] Das A K,Iqbal M. A simplified technique to compute spectral atmospheric radiation[J]. Solar Energy,1987,39(2):143—155.
    [10] Zhu Linxiao,Raman A,Fan Shanhui. Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody[J]. Proceedings of the National Academy of Sciences, 2015, 112(40):12282—12287.
    [11] Bhushan B,Singh R. Nusselt number and friction factor correlations for solar air heater duct having artificially roughened absorber plate[J]. Solar Energy,2011,85(5):1109—1118.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700