用户名: 密码: 验证码:
多孔Pb基前驱体的构建对钙钛矿薄膜质量及光伏性能的影响研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Construction of porous Pb-related precursor and its influence on perovskite films and device performance
  • 作者:范琳 ; 王鹏飞 ; 杨景海 ; 王奉友 ; 杨梅芳 ; 张玉红 ; 庞振宇 ; 孙岩森
  • 英文作者:FAN Lin;WANG Peng-fei;YANG Jing-hai;WANG Feng-you;YANG Mei-fang;ZHANG Yu-hong;PANG Zhen-yu;SUN Yan-sen;College of Physics,Jilin Normal University;
  • 关键词:Pb基前驱体薄膜 ; 多孔骨架PbICl ; 高质量钙钛矿薄膜 ; 两步旋涂法 ; 钙钛矿太阳电池
  • 英文关键词:Pb-related precursor film;;porous PbICl scaffold;;high quality perovskite film;;two-step sequential deposition method;;perovskite solar cells
  • 中文刊名:SLXK
  • 英文刊名:Jilin Normal University Journal(Natural Science Edition)
  • 机构:吉林师范大学物理学院;
  • 出版日期:2019-01-16
  • 出版单位:吉林师范大学学报(自然科学版)
  • 年:2019
  • 期:v.40;No.146
  • 基金:国家自然科学基金项目(61475063);; 吉林省科技发展计划项目(20180519016JH);; 吉林省教育厅“十三五”科学技术项目(JJKH20190998KJ)
  • 语种:中文;
  • 页:SLXK201901007
  • 页数:8
  • CN:01
  • ISSN:22-1393/N
  • 分类号:38-45
摘要
钙钛矿薄膜较大的晶粒尺寸、均匀的表面形貌以及较少的缺陷态是获得高效钙钛矿太阳电池的关键因素.采用PCBM修饰致密TiO_2电子传输层(ETL)表面,利用PCBM自身柔韧性促进形成疏松、多孔的Pb基前驱体薄膜,该结构有利于后续MAI溶液的充分渗透并为前驱体反应形成钙钛矿所必经的应力释放和晶体膨胀过程提供充分空间,从而获得高质量的大晶粒钙钛矿光吸收层.另外,将PbCl_2引入Pb基前驱体中可优化得到多孔骨架结构的PbICl前驱体薄膜,且钙钛矿薄膜中存在的非晶态PbCl_2可有效钝化材料缺陷,显著提高薄膜电学特性及整个电池性能.
        Perovskite film with large grain size,uniform morphology and less trap stats is one of the key requirements for high efficient solar cells. In this work,it has been found that PCBM incorporation above electron transporting layer(ETL) can promote the formation of porous Pb-related precursor film with loose structure due to its elastic nature. This precursor film plays a key role in high quality perovskite films realization benefiting from an effective stress release during structure expansion after methylammonium iodide dripping. Moreover,PbCl_2 has also been introduced in the Pb-related precursor,and it has been demonstrated that the formation of porous PbICl scaffold in the precursor film. It 's also worth mentioning that residual amorphous PbCl2 can effectively passivate defects in perovskite film,and dramatically improve film electrical properties and device performance.
引文
[1]LEWIS N,NOCERA D. Powering the planet:Chemical challenges in solar energy utilization[J]. PNAS,2006,103(43):15729-15735.
    [2]GRATZEL M. Solar energy conversion by dye-sensitized photovoltaic cells[J]. Inorg Chem,2005,44(20):6841-6851.
    [3]CANNAVALE A,ENVIRON E,COSSARI P,et al. Perovskite photovoltachromic cells for building integration[J]. Energy Environ Sci,2015,8:1578-1584.
    [4]ALBRECHT S,SALIBA M,BAENA J C,et al. Monolithic perovskite/silicon-heterojunctiontandem solar cells processed at low temperature[J].Energy Environ Sci,2016,7:81-88.
    [5]WANG K C,JENG J Y,SHEN P S,et al. P-type mesoscopic nickel oxide/organometallic perovskite heterojunction solar cells[J]. Scientific reports,2014,4:4756-4762.
    [6]JENG J Y,CHEN K C,CHIANG T Y,et al. Nickel oxide electrode interlayer in CH3NH3Pb I3perovskite/PCBM planar-heterojunction hybrid solar cells[J]. Adv Mater,2014,26(24):4107-4113.
    [7]WANG K C,SHEN P S,LI M H,et al. Low-temperature sputtered nickel oxide compact thin film as effective electron blocking layer for mesoscopic Ni O/CH3NH3Pb I3perovskite heterojunction solar cells[J]. ACS Appl Mater Inter,2014,6(15):11851-11858.
    [8]LIU M,JOHNSTON M B,SNAITH H J,et al. Efficient planar heterojunction perovskite solar cells by vapour deposition[J]. Nature,2013,501(7467):395-398.
    [9]ZHAO D,KE W,GRICE C R,et al. Annealing-free efficient vacuum-deposited planar perovskite solar cells with evaporated fullerenes as electron-selective layers[J]. Nano Energy,2016,19:88-97.
    [10]YOON H,KANG S M,LEE J K,et al. Hysteresis-free low-temperature-processed planar perovskite solar cells with 19. 1%efficiency[J].Energy Environ Sci,2016,9(7):2262-2266.
    [11]JIANG Q,ZHANG L,WANG H,et al. Enhanced electron extraction using SnO2for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells[J]. Nature Energy,2016,2:16177-16183.
    [12]TAN H,JAIN A,VOZNYY O,et al. Efficient and stable solution-processed pla-nar perovskite solar cells via contact passivation[J]. Science,2017,355(6326):722-726.
    [13]KE W,XIAO C,WANG C,et al. Employing lead thiocyanate additive to reduce the hysteresis and boost the fill factor of planar perovskite solar cells[J]. Adv Mater,2016,28(26):5214-5221.
    [14]JIANG Q,CHU Z,WANG P,et al. Planar-structure perovskite solar cells with efficiency beyond 21%[J]. Adv Mater,2017,17:3852-3858.
    [15]KIM H S,IM S H,PARK N G,et al. Organolead halide perovskite:new horiz-ons in solar cell research[J]. J Phys Chem C,2014,118(11):5615-5625.
    [16]BURSCHKA J,PELLET N,MOON S J,et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells[J]. Nature,2013,8:316-319.
    [17]DHARANI S,MULMUDI H K,YANTARA N,et al. High efficiency electrospun Ti O2nanofiber based hybrid organic-inorganic perovskite solar cell[J]. Nanoscale,2014,6(3):1675-1679.
    [18]BI D,MOON S J,HGGMAN L,et al. Using a two-step deposition technique to prepare perovskite(CH3NH3Pb I3)for thin film solar cells based on Zr O2and Ti O2mesostructures[J]. RSC Adv,2013,3(41):18762-18766.
    [19]SUN S,SALIM T,MATHEWS N,et al. The origin of high efficiency in low-temperature solution-processable bilayer organometal halidehybrid solar cells[J]. Energy Environ Sci,2014,7(1):399-407.
    [20]YELLA A,HEINIGER L P,GAO P,et al. Nanocrystalline rutile electron extract-ion layer enables low-temperature solution processed perovskite photovoltaics with 13. 7%efficiency[J]. Nano Lett,2014,14(5):2591-2596.
    [21]LIANG K,MITZI D B,PRIKAS M T,et al. Synthesis and characterization of organic-inorganic perovskite thin films prepared using a versatile two-step dipping technique[J]. Chem Mater,1998,10(1):403-411.
    [22]CHEN Q,ZHOU H,HONG Z,et al. Planar heterojunction perovskite solar cells via vapor-assisted solution process[J]. J Am Chem Soc,2013,136(2):622-625.
    [23]WU Y,ISLAM A,YANG X,et al. Retarding the crystallization of Pb I2for highly reproducible planar-structured perovskite solar cells via sequential deposition[J]. Energy Environ Sci,2014,7(9):2934-2938.
    [24]XIAO Z,BI C,SHAO Y,et al. Efficient,high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers[J]. Energy Environ Sci,2014,7(8):2619-2623.
    [25]ZHOU H,CHEN Q,LI G,et al. Interface engineering of highly efficient perovskite solar cells[J]. Science,2014,9:542-546.
    [26]WU N,SHI C,YING C,et al. PbICl:A new precursor solution for efficient planar perovskite solar cell by vapor-assisted solution process surf[J]. Appl Surf Sci,2015,9(357):2372-2377.
    [27]LUO S,YOU P,CAI G,et al. The influence of chloride on interdiffusion method for perovskite solar cells[J]. Mater Lett,2016,169:236-240.
    [28]QUILETTES D W,VORPAHL S M,STRANKS S D,et al. Impact of microstructure on local carrier lifetime in perovskite solar cells[J].Science,2015,348:683-686.
    [29]YU H,WANG F,XIE F,et al. The role of chlorine in the formation process of“CH3NH3Pb I3-xClx”perovskite[J]. Adv Funct Mater,2014,24:7102-7108.
    [30]DHARANI S,DEWI H A,PRABHAKAR R R,et al. Incorporation of Cl into sequentially deposited lead halide perovskite films for highly efficient mesoporous solar cells[J]. Nanoscale,2014,6:13854-13860.
    [31]FAN L,DING Y,SHI B,et al. Elucidating the role of chlorine in perovskite solar cells[J]. J Mater Chem A,2017,5:7423-7432.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700