用户名: 密码: 验证码:
外磁场与带轴夹角对非晶FeSiB/Cu/FeSiB三明治薄带巨磁阻抗特性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of the angle between magnetic field and ribbon axis on the magneto-impedance properties of amorphous FeSiB/Cu/FeSiB sandwiched ribbon
  • 作者:邵先亦 ; 徐爱娇 ; 王天乐
  • 英文作者:Shao Xian-Yi;Xu Ai-Jiao;Wang Tian-Le;College of Electronic and Information Engineering, Taizhou University;College of Pharmaceutical Chemistry and Material Engineering, Taizhou University;
  • 关键词:巨磁阻抗效应 ; FeSiB ; 三明治薄带
  • 英文关键词:giant magneto-impadence effect;;FeSiB;;sandwiched ribbon
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:台州学院电子与信息工程学院;台州学院医药化工与材料工程学院;
  • 出版日期:2019-03-11 17:09
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 基金:浙江省公益技术应用研究计划(批准号:2017C37096)资助的课题~~
  • 语种:中文;
  • 页:WLXB201906026
  • 页数:8
  • CN:06
  • ISSN:11-1958/O4
  • 分类号:207-214
摘要
采用层间胶合方法制备了淬态非晶FeSiB/Cu/FeSiB三明治薄带,研究了同尺寸单层薄带和三明治薄带的巨磁阻抗(giant magneto-impedance, GMI)随外磁场与带轴夹角β的变化特性.结果表明,FeSiB单层薄带在7.0 MHz最佳响应频率下,GMI仅约30%,外磁场与带轴夹角对单层薄带GMI几乎没有影响;三明治薄带的GMI效应则十分显著,在0.6 MHz最佳响应频率下,纵、横向GMI比分别达到272%和464%, GMI随β的增大而增强;所有β角的三明治薄带GMI曲线都出现各向异性峰,各向异性峰随β的增大而展宽.根据磁畴转动模型推导了薄带横向磁导率与各向异性场及β之间的函数关系式.结果显示,三明治薄带GMI随夹角β变化的特性与理论推算的横向磁导率变化有较好的一致性,而单层薄带则不然.该磁畴转动模型能定性解释三明治薄带GMI随外磁场方向变化特性.
        Amorphous FeSiB ribbons with nominal composition of Fe_(78)Si_9 B_(13) are prepared by single roll rapid quenching technique. In order to enhance the giant magneto-impedance(GMI) effect of FeSiB ribbons,interlaminar gluing method is used to produce FeSiB/Cu/FeSiB sandwiched structure in which the FeSiB ribbons act as external soft magnetic layers and the Cu foil acts as internal conductive layer. The variation characteristics of GMI with angle β between the external magnetic field and the ribbon axis for the single layer FeSiB ribbon and the sandwiched ribbon are studied by a rotating device placed in magnetic field which can drive the sample to rotate, to obtain a variable angle β from 0°to 90°with 15°degree angle interval. Magnetic domain structure detection shows that the amorphous FeSiB ribbons have near-axial magnetic anisotropy, and the angle between easy axis and ribbon axis is about 15°. In this work, in the case without considering the effects of shape anisotropy, the functional relationship among magnetic field at anisotropic peak of permeability,transverse permeability ratio and angle β is obtained according to the expression of the transverse permeability of ribbon derived from a domain rotation model. The results display that anisotropic peak appears in the transverse permeability for each of all testing values of angle(3. Moreover, the transverse permeability ratio increases with β increasing. The magneto-impedance testing results indicate that the maximum GMI ratio of single layer ribbon is only about 30% at an optimum response frequency of 7.0 MHz, and angle β has almost no influence on the GMI. In contrast, the GMI of sandwiched ribbon presents a significant enhancement, the maximum value of the longitudinal GMI ratio and that of transverse GMI ratio reach 272% and 464%,respectively at an optimum response frequency of 0.6 MHz, the GMI of sandwiched ribbon is sensitive to the variation of angle/3, and with increase of β the GMI increases accordingly. In addition, for all testing values of angle/3, the GMI profiles of sandwiched ribbon show anisotropic peaks, due to the influence of transverse demagnetization field, and the anisotropic peak broadens with the increase of angle β. By comparing the theoretical and experimental results, it can be concluded that for the sandwiched ribbon, the characteristics of GMI changing with angle(3 agree better with the theoretical transverse permeability, which but is not for single layer ribbon. Besides, whether the anisotropic peak of GMI appears is independent of the orientation of the external magnetic field. As the transverse permeability ratio increases with the increase of angle β, the GMI effect of sandwiched ribbon is enhanced accordingly. The study results also demonstrate that the domain rotation model can be used to explicate the variation of GMI properties of sandwiched ribbon with the angle between magnetic field and ribbon axis qualitatively when the domain rotation magnetization is dominant.
引文
[1] Zhang S L, Chen W Y, Zhang Y 2015 Acta Phys. Sin. 64167501(in Chinese)[张树玲,陈炜晔,张勇2015物理学报64167501]
    [2] Wang W J, Yuan H M, Li J, Ji C J, Dai Y Y, Xiao S Q 2013Sci. Chin:Phys. Mech. Astron. 43 852(in Chinese)[王文静,袁慧敏,李娟,姬长建,代由勇,萧淑琴2013中国科学:物理学力学天文学43 852]
    [3] Phan M H, Peng H X 2008 Prog. Mater. Sci. 53 323
    [4] He J, Guo H Q, Shen B G, He K Y, Zhang H W 2001 Mater.Sci. Eng. A 304-306 988
    [5] Phan M H, Peng H X, Wisnom M R, Yu S C, Kim C G, Nghi N H 2006 Sensor. Actuat. A:Phys. 129 62
    [6] Hika K, Panina L V, Mohri K 1996 IEEE Trans. Magn. 324594
    [7] Xiao S Q, Liu Y H, Yan S S, Dai Y Y, Zhang L, Mei L M2000 Phys. Rev. B 61 5734
    [8] Le A T, Tung M T, Phan M H 2012 J. Supercond. Nov.Magn. 25 1133
    [9] Zhou Y, Ding W, Chen J A, Yang C S, Gao X Y, Wang M J,Zhang Y M 2004 J. Magn. Mater. Dev. 35 8(in Chinese)[周勇,丁文,陈吉安,杨春生,高孝裕,王明军,张亚民2004磁性材料及器件35 8]
    [10] Zhong Z Y, Zhang H W, Jing Y L, Tang X L, Liu S 2008Sens. Actuators A:Phys. 141 29
    [11] Amalou F, Gijs M A M 2004 J. Appl. Phys. 95 1364
    [12] Alves F, Moutoussamy J, Coillot C, Abirached L, Kaviraj B2008 Sens. Actuators A:Phys. 145-146 241
    [13] Shao X Y, Chen W P, Zhong B Q, Xie J W 2018 Rare Metal Mat.Eng.47 1160(in Chinese)[邵先亦,陈卫平,钟彬荃,谢佳文2018稀有金属材料与工程47 1160]
    [14] Zhao C B, Zhang X L, Liu Q F, Wang J B 2016 J. Phys. D49 065006
    [15] Sommer R L, Chien C L 1996 Phys. Rev. B 53 R5982
    [16] Pirota K R, Kraus L, Knobel M, Pagliuso P G, Rettori C1999 Phys. Rev. B 60 6685
    [17] Yu J Q, Yu A B, Zhou Y, Cai B C, Zhao X L 2000Proceedings of the Fourth International Conference on Thin Film Physics and Applications Shanghai,China,May 8-11,2000 p514
    [18] Mardani R, Amirabadizadeh A 2014 Mod. Phys. Lett. B 281450197
    [19] Wang A L, Liu J T, Zhou Y S, Jiang H W, Zheng W 2004Acta Phys.Sin. 53 905(in Chinese)[王艾玲,刘江涛,周云松,姜宏伟,郑鹉2004物理学报53 905]
    [20] Panina L V, Mohri K, Uchiyama T, Noda M 1995 IEEE Trans. Magn. 31 1249
    [21] Reichl L E 1998 A Modern Course in Statistical Physics(2nd Ed.)(New York:Wiley-VCH)p376
    [22] Atkinson D, Squire P T 1998 J. Appl. Phys. 83 6569
    [23] Zhang J Q, Ye H Q, Zheng J L, Li T Y, Li W Z, Ma Y, Fang Y Z 2010 J. Zheiiang Normal Univ.(Nat. Sci.)33 150(in Chinese)[张建强,叶慧群,郑建龙,李通银,李文忠,马云,方允樟2010浙江师范大学学报(自然科学版)33 150]
    [24] Makhnovskiy D P, Panina L V, Mapps D J 2001 J. Appl.Phys. 89 7224
    [25] Betancourt I 2011 Materials 4 37
    [26] Kurlyandskaya G V, Barandiaran J M, Vazquez M, GarciA D, Dmitrieva N V 2000 J. Magn. Magn. Mater. 215-216 740
    [27] Franco C S, Ribas G P, Bruno A C 2006 Sens. Actuators A:Phys. 132 85
    [28] Sommer R L, Chien C L 1995 J. Appl. Phys. Lett. 67 3346
    [29] Zhao C B, Pan L N, Ma X Q, Li J N, Liu Q F, Wang J B2017 J. Magn. Magn. Mater. 444 198

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700