用户名: 密码: 验证码:
锈蚀钢筋混凝土梁承载能力分析的变角桁架模型
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Variable angle truss model for bearing capacity analysis of corroded reinforced concrete beams
  • 作者:罗大明 ; 杨成雨 ; 邢国华 ; 牛荻涛
  • 英文作者:LUO Daming;YANG Chengyu;XING Guohua;NIU Ditao;State Key Laboratory of Green Building in Western China, Xi'an University of Architecture and Technology;School of Civil Engineering, Xi'an University of Architecture and Technology;School of Civil Engineering, Chang'an University;
  • 关键词:锈蚀钢筋混凝土梁 ; 拉-压杆模型 ; 标准桁架模型 ; 变角桁架模型 ; 承载能力
  • 英文关键词:corroded reinforced concrete beam;;strut-and-tie model;;standard truss model;;variable angle truss model;;bearing capacity
  • 中文刊名:JZJB
  • 英文刊名:Journal of Building Structures
  • 机构:西安建筑科技大学省部共建西部绿色建筑国家重点实验室;西安建筑科技大学土木工程学院;长安大学建筑工程学院;
  • 出版日期:2018-10-24 10:13
  • 出版单位:建筑结构学报
  • 年:2019
  • 期:v.40
  • 基金:陕西省青年科技新星项目(2017KJXX-37);; 陕西省自然科学基础研究计划项目(2017JQ5103);; 中央高校基本科研业务费专项资金项目(300102288302);; 陕西省教育厅重点实验室科研计划项目(16JS056)
  • 语种:中文;
  • 页:JZJB201901013
  • 页数:8
  • CN:01
  • ISSN:11-1931/TU
  • 分类号:101-108
摘要
为了研究侵蚀环境下锈蚀钢筋混凝土梁在长期荷载作用下的承载能力,以荷载作用下锈蚀钢筋混凝土梁为研究对象,分析了钢筋锈蚀对混凝土梁黏结强度的影响,基于拉-压杆模型和标准桁架模型分别对锈蚀梁进行了承载力计算,进一步采用考虑钢筋锈蚀影响的修正变角桁架模型计算锈蚀钢筋混凝土梁的承载力,并通过49组锈蚀混凝土梁的试验数据对建议模型进行验证。结果表明:锈蚀钢筋混凝土梁承载力的试验值与变角桁架模型理论计算值之比的平均值为0.990,方差为0.071,二者吻合较好。采用变角桁架模型可精确计算锈蚀钢筋混凝土梁的承载力并预测其破坏模式,建议模型可用于锈蚀钢筋混凝土梁承载能力分析研究。
        In order to study the bearing capacity of corroded reinforced concrete beams under corrosive environment and long-term loads, the corroded reinforced concrete beams under sustained loads was taken as the research object, and the effects of steel corrosion on bond strength and failure mode were analyzed. Based on the strut-and-tie model and the standard truss model, the loading capacity of corroded reinforced concrete beams was calculated, and the bearing capacity of concrete beams was then calculated by using the modified variable angle truss model considering the effect of steel corrosion. The proposed model was validated by the test data of 49 corroded concrete beams. The results show that, for the bearing capacity of the reinforced concrete beams, the calculated values are in good agreement with the test values, and the mean value and the variance of the ratio between the two are 0.990 and 0.071, respectively. The variable angle truss model can accurately calculate the bearing capacity of corroded reinforced concrete beams and predict their failure modes. The proposed model can be used to analyze the bearing capacity of corroded reinforced concrete beams.
引文
[1] 冯乃谦,邢锋,刘崇熙. 混凝土与混凝土结构的耐久性[M]. 北京:机械工业出版社, 2009: 4. (FENG Naiqian, XING Feng, LIU Chongxi. Durability of concrete and concrete structure[M]. Beijing: Mechanical Industry Press, 2009:4. (in Chinese))
    [2] NOKHASTEH M A, EYRE J R. Strength assessment of corrosion damaged reinforced concrete slabs and beams[J]. Structures & Buildings, 1992, 94(2): 197-203.
    [3] ZHAO Z, CAIRNS J. Behavior of concrete beams with exposed reinforcement[J]. Structures & Buildings, 1993, 99(2): 141-154.
    [4] BHARGAVA K, GHOSH A K, MORI Y, et al. Suggested empirical models for corrosion-induced bond degradation in reinforced concrete[J]. Journal of Structural Engineering, 2008, 134(2): 221-230.
    [5] MAADDAWY T E, SOUDKI K, TOPPER T. Analytical model to predict nonlinear flexural behavior of corroded reinforced concrete beams[J]. ACI Structural Journal, 2005, 102(4): 550-559.
    [6] SCHLAICH J, SHAEFER K, JENNEWEIN M. Towards a consistent design of structural concrete[J]. PCI Journal,1987, 32(3): 74-150.
    [7] CEB-FIP. FIB model code for concrete structures[S]. Lausanne, Switzerland: Ernst & Sohn, 2010.
    [8] KIM J H, MANDER J B. Truss modeling of reinforced concrete shear-flexure behavior: technical report MCEER-99- 0005[R]. New York: Multidisciplinary Center for Earthquake Engineering Research, State University of New York at Buffalo, 1999.
    [9] LI B, CAO T N T. Determination of inclination of strut and shear strength using variable angle truss model for shear-critical RC beams[J]. Structural Engineering & Mechanics, 2012, 41(4): 459- 477.
    [10] PAN Z, LI B, LU Z. Effective shear stiffness of diagonally cracked reinforced concrete beams[J]. Engineering Structures, 2014, 59(2): 95-103.
    [11] ACI. Building code requirements for structural concrete and commentary:ACI 318-14[S]. Farmington Hills, MI: American Concrete Institute, 2014.
    [12] LI B, NGOC Tran C T. Reinforced concrete beam analysis supplementing concrete contribution in truss models[J]. Engineering Structures, 2008, 30(11): 3285-3294.
    [13] RODRIGUEZ J, ORTEGA L M, Casal J. Corrosion of reinforcing bars and service life of reinforced concrete structures: corrosion and bond deterioration[C]//International Conference on Concrete Across Borders. Odense, Denmark: Kongres Bureau Fyn,1994:315-326.
    [14] RODRIGUEZ J, ORTEGA L M, CASAL J. Load carrying capacity of concrete structures with corroded reinforcement[J]. Construction & Building Materials, 1997, 11(4): 239-248.
    [15] 牛荻涛. 混凝土结构耐久性与寿命预测[M]. 北京: 科学出版社, 2003: 96-97. (NIU Ditao. Durability and life forecast of reinforced concrete structure[M]. Beijing: Science Press, 2003: 96-97. (in Chinese))
    [16] VECCHIO F J, COLLINS M P. The modified compression-field theory for reinforced concrete elements subjected to shear[J]. ACI Structural Journal, 1986, 83(2): 219-231.
    [17] CORONELLI D. Bar corrosion in steel-concrete bond: material and structural effects in R/C[D]. Milan, Italy: Politecnico di Milano, 1998: 201.
    [18] CAPé M. Residual service-life assessment of existing R/C structures[D]. G?teborg, Sweden: Chalmers University of Technology, 1998: 133.
    [19] MOLINA F J, ALONSO C, ANDRADE C. Cover cracking as a function of rebar corrosion: part 2: numerical model[J]. Materials & Structures, 1993, 26(9): 532-548.
    [20] DEKOSTER M, BUYLE-BODIN F,MAUREL O,et al. Modelling of the flexural behaviour of RC beams subjected to localised and uniform corrosion[J]. Engineering Structures, 2003, 25(10): 1333-1341.
    [21] KEMP E L, WILHELM W J. Investigation of the parameters influencing bond cracking[J]. ACI Journal Proceedings, 1979, 76(1): 47-72.
    [22] STEWART M G. Mechanical behaviour of pitting corrosion of flexural and shear reinforcement and its effect on structural reliability of corroding RC beams[J]. Structural Safety, 2009, 31(1): 19-30.
    [23] SAJEDI S, HUANG Q. Probabilistic prediction model for average bond strength at steel-concrete interface considering corrosion effect[J].Engineering Structures, 2015, 99: 120-131.
    [24] REINECK K H. Examples for the design of structural concrete with strut-and-tie models[M]. Farmington Hills,MI:American Concrete Institute, 2002: 225-242.
    [25] MACGREGOR J G, WIGHT J K, TENG S, et al. Reinforced concrete: mechanics and design[M]. Upper Saddle River, NJ: Prentice Hall, 1997.
    [26] ZHANG X, WANG L, ZHANG J, et al. Model for flexural strength calculation of corroded RC beams considering bond-slip behavior[J]. Journal of Engineering Mechanics, 2016, 142(7): 4016038.
    [27] WANG L, MA Y, DING W, et al. Comparative study of flexural behavior of corroded beams with different types of steel bars[J]. Journal of Performance of Constructed Facilities, 2015, 29(6): 4014163.
    [28] 赵羽习,金伟良. 锈蚀箍筋混凝土梁的抗剪承载力分析[J]. 浙江大学学报(工学版), 2008, 42(1): 19-24. (ZHAO Yuxi, JIN Weiliang. Analysis on shearing capacity of concrete beams with corroded stirrups[J]. Journal of Zhejiang University (Engineering Science),2008,42(1):19-24.(in Chinese))
    [29] WANG X H, GAO X H, LI B, et al. Effect of bond and corrosion within partial length on shear behaviour and load capacity of RC beam[J]. Construction & Building Materials, 2011, 25(4): 1812-1823.
    [30] ZHAO S B, HOU P B, QU F L. Laboratory fast corrosion test of plain steel bars in concrete beams[J]. Advanced Materials Research, 2012, 535/536/537:1803-1806.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700