用户名: 密码: 验证码:
轮足式仿生软体机器人设计与运动分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Design and Motion Analysis of a Wheel-walking Bionic Soft Robot
  • 作者:姚建涛 ; 陈新博 ; 陈俊涛 ; 张弘 ; 李海利 ; 赵永生
  • 英文作者:YAO Jiantao;CHEN Xinbo;CHEN Juntao;ZHANG Hong;LI Haili;ZHAO Yongsheng;Parallel Robot and Mechatronic System Laboratory of Hebei Province,Yanshan University;Laboratory of Advanced Forging & Stamping Technology and Science (Yanshan University),Ministry of Education;
  • 关键词:软体机器人 ; 轮足式 ; 快速行进 ; 运动研究
  • 英文关键词:soft robot;;wheel-walking;;fast marching;;locomotion study
  • 中文刊名:JXXB
  • 英文刊名:Journal of Mechanical Engineering
  • 机构:燕山大学河北省并联机器人与机电系统实验室;先进锻压成形技术与科学教育部重点实验室(燕山大学);
  • 出版日期:2018-11-16 15:42
  • 出版单位:机械工程学报
  • 年:2019
  • 期:v.55
  • 基金:国家自然科学基金(51675459);; 河北省自然科学基金京津冀合作专项(E2017203387)资助项目
  • 语种:中文;
  • 页:JXXB201905004
  • 页数:9
  • CN:05
  • ISSN:11-2187/TH
  • 分类号:41-49
摘要
基于自然界中弯曲蠕虫的运动原理,借鉴其结构特点,设计一种双腔结构的轮足式仿生蠕动软体机器人,利用硅橡胶材料的超弹性特征,通过在多气囊结构中充气挤压变形使软体机器人本体结构发生弯曲,周期性的充放气实现软体机器人的蠕动运动。引入轮足式设计,将软体机器人软体基体的蠕动运动转变为车轮的旋转运动,加快蠕动型机器人的运动速度,通过向软体基体双腔充入不同气压,实现大角度转弯。分析了蠕动机器人周期性的直线运动和转向运动过程,研究了机器人运动过程中的非线性力学特性,测试了软体基体双腔充气状态下变形量与气压的关系以及单腔状态下转弯角度与气压的关系,分析了软体机器人的最快行进速度和最小转弯半径,确定了软体机器人的运动性能。
        Based on the movement model and the structural characteristics of worms, a bionic wheel-walking squirming soft robot with a double-cavity structure is proposed. The main body of the soft robot is made of hyperelastic silicon rubber, and its multi-air-bag structures would expand and extrude each other to bend the robot body when air at a certain pressure is pumped into the air bags. The inchworm-like peristaltic movement of the soft robot is realized by periodically charging and releasing air. In addition,the peristaltic motion of the soft robot is changed into rotational motion of the wheels to accelerate its moving speed because of the ingenious wheel-walking device. And a large angle turn can be achieved by fill the two chambers with air of different pressure. The periodic motion and steering movement of the squirming robot are analyzed. the nonlinear mechanical properties of the robot are studied. The relationship between the deformation and the pressure is tested when the two cavities are filled with air of same pressure.And the relationship the turning angle and the pressure is also tested when the single cavity is inflated. The maximum moving speed and the minimum turning radius of the soft robot are analyzed. Based on the results above, the motion performance of the soft robot is determined.
引文
[1]王田苗,郝雨飞,杨兴帮,等.软体机器人:结构、驱动、传感与控制[J].机械工程学报,2017,53(13):1-13.WANG Tianmiao,HAO Yufei,YANG Xingbang,et al.Soft robotics:Structure,actuation,sensing and control[J].Journal of Mechanical Engineering,2017,53(13):1-13.
    [2]曹玉君,尚建忠,梁科山,等.软体机器人研究现状综述[J].机械工程学报,2012,48(3):25-33.CAO Yujun,SHANG Jianzhong,LIANG Keshan,et al.A review on the soft robotics[J].Journal of Mechanical Engineering,2012,48(3):25-33.
    [3]RUS D,TOLLEY M T.Design,fabrication and control of soft robots[J].Nature,2015,521(7553):467.
    [4]FEI Y,PANG W.Analysis on nonlinear turning motion of multi-spherical soft robots[J].Nonlinear Dynamics,2016,88(2):1-10.
    [5]MARCHESE A D,ONAL C D,RUS D.Autonomous soft robotic fish capable of escape maneuvers using fluidic elastomer actuators[J].Soft Robotics,2014,1(1):75.
    [6]SFAKIOTAKIS M,KAZAKIDI A,TSAKIRIS D P.Octopus-inspired multi-arm robotic swimming[J].Bioinspiration&Biomimetics,2015,10(3):035005.
    [7]LIN H T,LEISK G G,TRIMMER B.Go QBot:Acaterpillar-inspired soft-bodied rolling robot[J].Bioinspiration&Biomimetics,2011,6(2):026007.
    [8]NAKAMARU S,MAEDA S,HARA Y,et al.Development of novel self-oscillating gel actuator for achievement of chemical robot[C]//IEEE/RSJInternational Conference on Intelligent Robots and Systems.IEEE,2009:4319-4324.
    [9]SEOK S,ONAL C D,CHO K J,et al.Meshworm:Aperistaltic soft robot with antagonistic nickel titanium coil actuators[J].IEEE/ASME Transactions on Mechatronics,2013,18(5):1485-1497.
    [10]SHEPHERD R F,ILIEVSKI F,CHOI W,et al.Multigait soft robot[J].Proceedings of the National Academy of Sciences of the United States of America,2011,108(51):20400.
    [11]MORIN S A,WHITESIDES G M.Camouflage and display for soft machines[J].Science,2012,337(6096):828.
    [12]MENCIASSI A,GORINI S,PERNORIO G,et al.A SMAactuated artificial earthworm[C]//IEEE International Conference on Robotics and Automation,2004,Proceedings ICRA.IEEE,2004:3282-3287.
    [13]CHANG Y C,KIM W J.Aquatic ionic-polymer-metal-composite insectile robot with multi-DOF legs[J].IEEE/ASME Transactions on Mechatronics,2013,18(2):547-555.
    [14]JUNG K,KOO J C,NAM J D,et al.Artificial annelid robot driven by soft actuators[J].Bioinspiration&Biomimetics,2007,2(2):S42.
    [15]MAO S,DONG E,JIN H,et al.Gait study and pattern generation of a starfish-like soft robot with flexible rays actuated by SMAs[J].Journal of Bionic Engineering,2014,11(3):400-411.
    [16]李铁风,李国瑞,梁艺鸣,等.软体机器人结构机理与驱动材料研究综述[J].力学学报,2016,48(4):756-766.LI Tiefeng,LI Guorui,LIANG Yiming,et al.Review of materials and structures in soft robotics[J].Chinese Journal of Theoretical and Applied Mechanics,2016,48(4):756-766.
    [17]费燕琼,庞武,于文博.气压驱动软体机器人运动研究[J].机械工程学报,2017,53(13):14-18.FEI Yanqiong,PANG Wu,YU Wenbo.Movement of air-driven soft robot[J].Journal of Mechanical Engineering,2017,53(13):14-18.
    [18]黄建龙,解广娟,刘正伟.基于Mooney-Rivlin模型和Yeoh模型的超弹性橡胶材料有限元分析[J].橡胶工业,2008,55(8):467-471.HUANG Jianlong,XIE Guangjuan,LIU Zhengwei.The finite element analysis of super-elastic rubber material based on Mooney-Rivlin model and Yeoh model[J].China Rubber Industry,2008,55(8):467-471.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700