用户名: 密码: 验证码:
水下钻孔爆破冲击波下桥墩的动态响应及防护分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Dynamic Response and Protective Analysis of Bridge Pier to Shock Wave in Underwater Drilling Blasting
  • 作者:李源 ; 吴立 ; 彭亚雄 ; 朱彬彬 ; 谢达建
  • 英文作者:LI Yuan;WU Li;PENG Yaxiong;ZHU Binbin;XIE Dajian;Faculty of Engineering,China University of Geosciences;Hu'nan Provincial Key Laboratory of Geotechnical Engineering for Stability Control and Health Monitoring,Hu'nan University of Science and Technology;Changjiang Chongqing Waterway Engineering Bureau;
  • 关键词:水下钻孔爆破 ; 水中冲击波 ; 动态响应 ; 气泡帷幕 ; 防护
  • 英文关键词:underwater drilling blasting;;shock wave in water;;dynamic response;;bubble curtain;;protection
  • 中文刊名:BPQC
  • 英文刊名:Explosive Materials
  • 机构:中国地质大学(武汉)工程学院;湖南科技大学岩土工程稳定控制与健康监测湖南省重点实验室;长江重庆航道工程局;
  • 出版日期:2019-01-23 16:10
  • 出版单位:爆破器材
  • 年:2019
  • 期:v.48;No.228
  • 基金:国家自然科学基金项目(41672260)
  • 语种:中文;
  • 页:BPQC201901012
  • 页数:7
  • CN:01
  • ISSN:32-1163/TJ
  • 分类号:62-68
摘要
利用数值模拟方法以及现场监测技术,结合砖灶子水下炸礁项目,研究了水下钻孔爆破水中冲击波对桥墩的影响以及防护,对水中冲击波作用下桥墩结构的动态响应以及气泡帷幕的削减效果进行对比分析,并结合现场监测数据,对李家沱大桥的动态响应以及安全状态做出评价。研究发现:桥墩结构对水中冲击波的动态响应在桥墩中部及桥趾部位较大,且迎爆面的响应大于背爆面,测量点的速度与加速度响应最大值均出现在水平径向,然后是垂直方向和水平切向;气泡帷幕对于水中冲击波的削减效果良好,且距离保护对象5 m时效果最佳。运用气泡帷幕防护及现场监测指导施工,使得李家沱大桥处于安全状态下。
        Combining with underwater drilling blasting reef project in Zhuanzaozi, numerical simulation methods and on-site monitoring techniques were used to study the influence of shock wave in underwater drilling blasting on piers and preventive measures. Dynamic response of pier structure to shock wave in water and reduction effects of bubble curtain have been analyzed in comparison. Combining with on-site monitoring data, dynamic response and safety status of Lijiatuo Bridge has been evaluated. Results show that, the dynamic response of the pier structure to shock waves in water is larger in the middle of the pier and at the toe, and the response of the explosive face is larger than the back face. The maximum velocity and acceleration response appear in the horizontal radial direction, then the vertical direction and the horizontal tangential direction. When the distance between bubble curtain and the protected object is 5 m, the weakening effect could be the best. Bubble curtain protection and on-site monitoring were used to guide the construction, making the Lijiatuo Bridge in a safe state.
引文
[1] 周凡. 水下爆破工程的安全及控制探讨[J]. 中国水运, 2014, 14(8): 356-357,359.
    [2] 陈春歌, 申志兵, 张贤凯, 等. 水下爆破冲击波危害及安全控制措施的模拟分析[J]. 安全与环境工程, 2011, 18(1): 58-61.CHEN C G, SHEN Z B, ZHANG X K, et al. Simulation of underwater explosion shock hazards and safety control[J]. Safety and Environmental Engineering, 2011, 18(1): 58-61.
    [3] 赵为, 梁作民, 郭成喜. 水下近场爆破安全控制[J]. 水运工程, 2007,33(9):159-164.ZHAO W, LIANG Z M, GUO C X. Safety control of underwater near-site explosion[J]. Port & Waterway Engineering, 2007,33(9):159-164.
    [4] 张鹏翔, 顾文彬, 叶序双. 浅层水中爆炸冲击波切断现象浅探[J]. 爆炸与冲击, 2002, 22(3): 221-228.ZHANG P X, GU W B, YE X S. Discussions of blasting shock waves cutoff in shallow-layer water[J]. Explosion and Shock Waves, 2002, 22(3): 221-228.
    [5] LIU J H,WU Y S,ZHAO B L,et al. A simplified method for analyzing the response of GRP ship to underwater explosion[J]. Journal of Ship Mechanics, 2000,4(3):51-58.
    [6] 李裕春, 刘强, 毛益明, 等. 浅层水中冲击波作用下混凝土墩的动态响应分析[C]//第七届全国工程结构安全防护学术会议. 宁波,2009:81-87.
    [7] 彭亚雄. 水下钻孔爆破地震波与水击波协同作用下桥墩动力响应特征研究[D]. 武汉: 中国地质大学(武汉), 2018.PENG Y X. Study on the dynamic responses of bridge piers under the synergistic effects of seismic wave and water shock wave induced by the underwater drilling and blasting[D]. Wuhan: China University of Geosciences(Wuhan), 2018.
    [8] 谢达建, 吴立, 洪江,等. 气泡帷幕对水下爆破冲击波的削弱作用研究[J]. 人民长江, 2018, 49(8): 72-77.XIE D J, WU L, HONG J, et al. Study on weakening effect of bubble curtain on water shock wave in underwater blasting[J]. Yangtze River, 2018, 49(8): 72-77.
    [9] 刘欣,顾文彬,陈学平.气泡帷幕对水中冲击波衰减特性的数值模拟研究[J].爆破,2015,32(3):79-84.LIU X, GU W B, CHEN X P. Numerical simulation study of attenuation characteristics of water shock wave under bubble curtain[J].Blasting,2015,32(3):79-84.
    [10] 齐世福, 刘新波, 李裕春. 水下钻孔爆破的数值模拟[J]. 工程爆破, 2010, 16(4): 13-17.QI S F, LIU X B, LI Y C. Numberical simulation of underwater drilling blasting[J]. Engineering Blastig, 2010, 16(4): 13-17.
    [11] 殷秀红, 钟冬望, 黄小武, 等. 水下钻孔爆破岩石各区应力的数值模拟[J]. 爆破, 2014, 31(4): 11-15,53.YIN X H, ZHONG D W, HUANG X W, et al. Numerical simulation of rock stress of underwater drilling blasting[J]. Blasting, 2014, 31(4): 11-15,53.
    [12] 张兵文, 张文扬, 吴暖, 等. 预裂爆破与气泡帷幕技术在水下爆破中的应用[J]. 工程爆破, 2015, 21(5): 6-9.ZHANG B W, ZHANG W Y, WU N, et al. Application of presplitting blasting and air bubble curtain technologies in underwater blasting[J]. Engineering Blasting, 2015, 21(5): 6-9.
    [13] 胡伟才, 吴立, 舒利,等. 不同设置方式下气泡帷幕对水中冲击波衰减特性的影响[J]. 科学技术与工程, 2018, 18(17): 33-38.HUI W C, WU L, SHU L,et al. Influence of water shock wave on attenuation characteristics under bubble curtain with different settings[J]. Science Technology and Engineering, 2018, 18(17): 33-38.
    [14] 贾虎, 沈兆武. 空气隔层对水中冲击波的衰减特性[J]. 爆炸与冲击, 2012, 32(1): 61-66.JIA H, SHEN Z W. An investigation into attenuation of underwater shockwave by air interlayer[J]. Explosion and Shock Waves, 2012, 32(1): 61-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700