用户名: 密码: 验证码:
阿尔金新近纪红黏土粒度特征及古气候记录
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Grain Size Characteristics and Paleoclimate Records of the Neogene Red Clay in Altun, Western China
  • 作者:黄丹青 ; 杨利荣 ; 李建星 ; 岳乐平 ; 潘峰 ; 徐永 ; 张余波
  • 英文作者:HUANG DanQing;YANG LiRong;LI JianXing;YUE LePing;PAN Feng;XU Yong;ZHANG YuBo;State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University;Xi'an Center of Geological Survey,China Geological Survey;
  • 关键词:阿尔金 ; 红黏土 ; 粒度 ; 新近纪 ; 端元模型 ; 西风
  • 英文关键词:Altun;;red clay;;grain size;;Neogene;;End Member Model;;westerly
  • 中文刊名:CJXB
  • 英文刊名:Acta Sedimentologica Sinica
  • 机构:西北大学大陆动力学国家重点实验室西北大学地质系;中国地质调查局西安地质调查中心;
  • 出版日期:2018-06-08 14:04
  • 出版单位:沉积学报
  • 年:2019
  • 期:v.37
  • 基金:国家自然科学基金项目(40802039,201180025,41372020,41372036)~~
  • 语种:中文;
  • 页:CJXB201902008
  • 页数:11
  • CN:02
  • ISSN:62-1038/P
  • 分类号:88-98
摘要
为反演阿尔金新近纪红黏土记录的古气候、古环境信息,在已有的磁性地层学约束基础之上对剖面的粒度指标进行了系统的分析,并利用粒度端元模型(EMM)进行分解。结果表明,可分为三个粒度端元:端元1(众数粒径5.2μm)众数粒径集中分布于2~6μm,与北太平洋西风带粒度分布和中国黄土细粒组分的粒度分布相似;端元2(众数粒径20μm)呈负偏态非对称分布,众数粒径在32~16μm之间,为低空西风所搬运短距离做跃移运动的粉尘物质;端元3为双主峰分布,众数粒径57μm和2.5μm,代表着尘暴事件中风动力近源变化强度,反映混合沉积特征。其中在10.8~10.3 Ma、8~6 Ma、5.2~4.3 Ma、3.6~2.8 Ma端元1粒度含量呈减小趋势,端元2粒度百分含量呈逐渐增加趋势,中值粒径增大。13~2.6 Ma阿尔金红黏土记录显示内陆干旱化加剧事件经历了10.8~10.3 Ma、8~6 Ma、5.2~4.3 Ma、3.6~2.8 Ma四个阶段,结合前人对该剖面及邻区其他地质环境记录研究表明,亚洲内陆干旱化可能的起始时间为11 Ma左右,西风环流在本区占主导地位。全球变冷是内陆干旱化加剧的主导要素,青藏高原的阶段性隆升起着推动作用。
        The Loess Plateau with eolian accumulation is the most widespread and most continuous area in western China. Based on the loess-paleosol sequence and research of the underlying red clay, a series of advances have been made in determining the inland aridity, the evolution of the paleo-monsoon, and its constraints on the uplift of the plateau. The eolian deposits found in the western part of China also provide indispensable data for inland aridity research. Based on previous field investigations, this paper takes the Neogene red clay in the Altun Mountain area on the northeastern margin of Qinghai-Tibet Plateau as the research focus, and based on the magnetic stratigraphy, substitution indices of paleoclimatology, such as magnetic susceptibility, particle size, etc, are used to reconstruct the palaeoclimate evolution process of the Altun area and explore its indicative significance for the aridity of the Asian interior. In this paper, grain size analysis is carried out on the basis of the existing magnetic stratigraphic constraints and the paleo-climatic environment information for the inversion of the Altun Neogene red clay records. The sediment grain size End Member Model(EMM) was decomposed. It can be divided into three End Members: EM1(mode particle size 5.2 μm) has a concentration size distribution in 2-6 μm, grain size distribution in the westerlies of the North Pacific Ocean, and grain size distribution of Chinese loess. EM2(Mode Size 20 μm) shows a negative skewed asymmetric distribution, and the Mode Size is between 32-16 μm. It is the dust material, which is moved by the low-level westerly over short distances. The distribution of EM3 is a double main peak, and the particle sizes are 57 μm and 2.5 μm, representing the intensity of near-source variation of wind-stroke dynamics during the duststorm event reflecting the mixed depositional characteristics. During 10.8-10.3 Ma, 8-6 Ma, 5.2-4.3 Ma, and 3.6-2.8 Ma, the particle content of End-Member 1 gradually decreased while the granularity percent content of End-Member 2 shows a gradually increasing trend and medium particle size. The Altun red clay records show that the intensity of the inland drought has gone through four stages: 10.8-10.3 Ma, 8-6 Ma, 5.2-4.3 Ma, and 3.6-2.8 Ma. Combined with previous studies of other geological records for the profile and related geological records of the adjacent areas, the onset time of inland drought may be 11 Ma. The westerly wind is dominant in this area, global cooling is the leading factor of the intensification of inland drought, and the stage uplift of the Tibei-Plateau is promoted.
引文
[1] An Z S. The history and variability of the East Asian paleomonsoon climate[J]. Quaternary Science Reviews, 2000, 19(1/2/3/4/5): 171-187.
    [2] 孙有斌,孙东怀,安芷生. 灵台红粘土—黄土—古土壤序列频率磁化率的古气候意义[J]. 高校地质学报,2001,7(3):300-306. [Sun Youbin, Sun Donghuai, An Zhisheng. Paleoclimatic implication of frequency dependent magnetic susceptibility of red clay-loess-paleosol sequences in the Lingtai profile[J]. Geological Journal of China Universities, 2001, 7(3): 300-306.]
    [3] Xiong S F, Jiang W Y, Yang S L, et al. Northwestward decline of magnetic susceptibility for the red clay deposit in the Chinese Loess Plateau[J]. Geophysical Research Letters, 2002, 29(24): 2162.
    [4] 强小科,安芷生,常宏. 佳县红粘土堆积序列频率磁化率的古气候意义[J]. 海洋地质与第四纪地质,2003,23(3):91-96. [Qiang Xiaoke, An Zhisheng, Chang Hong. Paleoclimatic implication of frequency-dependent magnetic susceptibility of red clay sequences in the Jiaxian profile of northern China[J]. Marine Geology & Quaternary Geology, 2003, 23(3): 91-96.]
    [5] Sun D H, Bloemendal J, Yi Z Y, et al. Palaeomagnetic and palaeoenvironmental study of two parallel sections of late Cenozoic strata in the central Taklimakan Desert: Implications for the desertification of the Tarim Basin[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 300(1/2/3/4): 1-10.
    [6] 鹿化煜,安芷生. 黄土高原黄土粒度组成的古气候意义[J]. 中国科学(D辑):地球科学,1998,28(3):278-283. [Lu Huayu, An Zhisheng. Paleoclimatic significance of grain size of loess-palaeosol deposit in Chinese Loess Plateau[J]. Science China (Seri.D): Earth Sciences, 1998, 28(3): 278-283.]
    [7] 丁仲礼,孙继敏,杨石岭,等. 灵台黄土—红粘土序列的磁性地层及粒度记录[J]. 第四纪研究,1998,18(1):86-94. [Ding Zhongli, Sun Jimin, Yang Shiling, et al. Magnetostratigraphy and grain size record of a thick red clay-loess sequence at Lingtai, the Chinese Loess Plateau[J]. Quaternary Sciences, 1998, 18(1): 86-94.]
    [8] 孙东怀,鹿化煜,Rea D,等. 中国黄土粒度的双峰分布及其古气候意义[J]. 沉积学报,2000,18(3):327-335. [Sun Donghuai, Lu Huayu, Rea D, et al. Bimode grain-size distribution of Chinese Loess and its paleoclimate implication[J]. Acta Sedimentologica Sinica, 2000, 18(3): 327-335.]
    [9] 鹿化煜,安芷生. 黄土高原红粘土与黄土古土壤粒度特征对比:红粘土风成成因的新证据[J]. 沉积学报,1999,17(2):226-232. [Lu Huayu, An Zhisheng. Comparison of grain-size distribution of red clay and loess-paleosol deposits in Chinese Loess Plateau[J]. Acta Sedimentologica Sinica, 1999, 17(2): 226-232.]
    [10] Wang X Y, Lu H Y, Vandenberghe J, et al. Late Miocene uplift of the NE Tibetan Plateau inferred from basin filling, planation and fluvial terraces in the Huang Shui catchment[J]. Global and Planetary Change, 2012, 88-89(2): 10-19.
    [11] Sun D H, Shaw J, An Z S, et al. Magnetostratigraphy and paleoclimatic interpretation of a continuous 7.2 Ma Late Cenozoic Eolian sediments from the Chinese Loess Plateau[J]. Geophysical Research Letters, 1998, 25(1): 85-88.
    [12] Fan M J, Song C H, Dettman D L, et al. Intensification of the Asian winter monsoon after 7.4 Ma: Grain-size evidence from the Linxia Basin, northeastern Tibetan Plateau, 13.1 Ma to 4.3 Ma[J]. Earth and Planetary Science Letters, 2006, 248(1/2): 186-197.
    [13] 宋友桂,方小敏,李吉均,等. 六盘山东麓朝那剖面红粘土—年代及其构造意义[J]. 第四纪研究,2000,20(5):457-463. [Song Yougui, Fang Xiaomin, Li Jijun, et al. Age of red clay at Chaona section near eastern Liupan Mountain and its tectonic significance[J]. Quaternary Sciences, 2000, 20(5): 457-463.]
    [14] Yang S L, Ding Z L. Magnetostratigraphy and Sedimentology of the eolian deposits since the Late Miocene in Northern China and the paleoclimatic implications[J]. Journal of the Graduate School of the Chinese Academy of Sciences, 2002, 19(2): 202-208.
    [15] Ding Z L, Derbyshire E, Yang S L, et al. Stepwise expansion of desert environment across northern China in the past 3.5 Ma and implications for monsoon evolution[J]. Earth and Planetary Science Letters, 2005, 237(1/2): 45-55.
    [16] Heller F, Liu T S. Magnetostratigraphical dating of loess deposits in China[J]. Nature, 1982, 300(5891): 431-433.
    [17] 刘东生. 黄土与环境[M]. 北京:科学出版社,1985. [Liu Tungsheng. Loess and environment[M]. Beijing: Science Press, 1985.]
    [18] Pye K, Tsoar H. Aeolian sand and sand dunes[M]. Berlin, Heidelberg: Springer, 2009.
    [19] Sun D H, Bloemendal J, Rea D K, et al. Grain-size distribution function of polymodal sediments in hydraulic and aeolian environments, and numerical partitioning of the sedimentary components[J]. Sedimentary Geology, 2002, 152(3/4): 263-277.
    [20] Sun J M, Ye J, Wu W Y, et al. Late Oligocene-Miocene mid-latitude aridification and wind patterns in the Asian interior[J]. Geology, 2010, 38(6): 515-518.
    [21] Pan F, Li J X, Xu Y, et al. Provenance of Neogene eolian red clay in the Altun region of western China—Insights from UPb detrital zircon age data[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 459: 488-494.
    [22] 李建星,岳乐平,潘峰,等. 阿尔金地区首次发现了风成堆积:红粘土[J]. 地质通报,2012,31(12):2076-2078. [Li Jianxing, Yue Leping, Pan Feng, et al. The first discovery of windblown accumulation red clay in Altun Mountains region[J]. Geological Bulletin of China, 2012, 31(12): 2076-2078.]
    [23] Li J X, Yue L P, Pan F, et al. Intensified aridity of the Asian interior recorded by the magnetism of red clay in Altun Shan, NE Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 411: 30-41.
    [24] Shang Y, Beets C J, Tang H, et al. Variations in the provenance of the Late Neogene Red Clay deposits in northern China[J]. Earth and Planetary Science Letters, 2016, 439: 88-100.
    [25] 李建星,郭琳,过磊,等. 1:25万茫崖幅区域地质调查修测报告[R]. 西安:中国地质调查局西安地质调查中心,2015:98-141. [Li Jianxing, Guo Lin, Guo Lei, et al. Revision of regional geological survey reported in Mang Ya sheet (1:250000)[R]. Xi'an: Xi'an Center of Geological Survey, China Geological Survey, 2015: 98-141.]
    [26] Weltje G J. End-member modeling of compositional data: Numerical-statistical algorithms for solving the explicit mixing problem[J]. Mathematical Geology, 1997, 29(4): 503-549.
    [27] Yu S Y, Colman S M, Li L X. BEMMA: A hierarchical Bayesian end-member modeling analysis of sediment grain-size distributions[J]. Mathematical Geosciences, 2016, 48(6): 723-741.
    [28] Vriend M, Prins M A, Buylaert J P, et al. Contrasting dust supply patterns across the north-western Chinese Loess Plateau during the last glacial-interglacial cycle[J]. Quaternary International, 2011, 240(1/2): 167-180.
    [29] Paterson G A, Heslop D. New methods for unmixing sediment grain size data[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(12): 4494-4506.
    [30] Griffiths J C. Atlas of Quartz Sand Surface Textures by David H. Krinsley, John C. Doornkamp[J]. The Journal of Geology, 1975, 83(1):138-139.
    [31] 张秀芝. Weibull分布参数估计方法及其应用[J]. 气象学报,1996,54(1):108-116. [Zhang Xiuzhi. Parameter estimate method application of Weibull distribution[J]. Acta Meteorologica Sinica, 1996, 54(1): 108-116.]
    [32] 戚帮申,胡道功,杨肖肖,等. 祁连山新生代古海拔变化的碳氧同位素记录[J]. 地球学报,2015,36(3):323-332. [Qi Bangshen, Hu Daogong, Yang Xiaoxiao, et al. Paleoelevation of the Qilian Mountain inferred from carbon and oxygen isotopes of Cenozoic strata[J]. Acta Geoscientica Sinica, 2015, 36(3): 323-332.]
    [33] Pye K. Aeolian dust and dust deposits[M]. London: Academic Press, 1987.
    [34] Qiang M, Lang L, Wang Z. Do fine-grained components of loess indicate westerlies: Insights from observations of dust storm deposits at Lenghu (Qaidam Basin, China)[J]. Journal of Arid Environments, 2010, 74(10): 1232-1239.
    [35] Zhuang G S, Hourigan J K, Koch P L, et al. Isotopic constraints on intensified aridity in Central Asia around 12 Ma[J]. Earth and Planetary Science Letters, 2011, 312(1/2): 152-163.
    [36] Song C H, Hu S H, Han W X, et al. Middle Miocene to earliest Pliocene sedimentological and geochemical records of climate change in the western Qaidam Basin on the NE Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 395: 67-76.
    [37] Dettman D L, Fang X M, Garzione C N, et al. Uplift-driven climate change at 12 Ma: A long δ18O record from the NE margin of the Tibetan plateau[J]. Earth and Planetary Science Letters, 2003, 214(1/2): 267-277.
    [38] Charreau J, Kent-Corson M L, Barrier L, et al. A high-resolution stable isotopic record from the Junggar Basin (NW China): Implications for the paleotopographic evolution of the Tianshan Mountains[J]. Earth and Planetary Science Letters, 2012, 341-344: 158-169.
    [39] Kent-Corson M L, Ritts B D, Zhuang G S, et al. Stable isotopic constraints on the tectonic, topographic, and climatic evolution of the northern margin of the Tibetan Plateau[J]. Earth and Planetary Science Letters, 2009, 282(1/2/3/4): 158-166.
    [40] Jiang H C, Ding Z L. Eolian grain-size signature of the Sikouzi lacustrine sediments (Chinese Loess Plateau): Implications for Neogene evolution of the East Asian winter monsoon[J]. GSA Bulletin, 2010, 122(5/6): 843-854.
    [41] Guo Z T, Ruddiman W F, Hao Q Z, et al. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China[J]. Nature, 2002, 416(6877): 159-163.
    [42] 鹿化煜,安芷生. 洛川黄土粒度组成的古气候意义[J]. 科学通报,1997,42(1):66-69. [Lu Huayu, An Zhisheng. Grain-size composition of Luochuan loess and paleoclimate implication[J]. Chinese Science Bulletin, 1997, 42(1): 66-69.]
    [43] Sun D H, An Z S, Shaw J, et al. Magnetostratigraphy and Palaeoclimatic significance of Late Tertiary aeolian sequences in the Chinese Loess Plateau[J]. Geophysical Journal International, 1998, 134(1): 207-212.
    [44] Ding Z L, Sun J M, Liu T S, et al. Wind-blown origin of the Pliocene red clay formation in the central Loess Plateau, China[J]. Earth and Planetary Science Letters, 1998, 161(1/2/3/4): 135-143.
    [45] An Z S, Kutzbach J E, Prell W L, et al. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times[J]. Nature, 2001, 411(6833): 62-66.
    [46] Sun D H, Zhang Y B, Han F, et al. Magnetostratigraphy and palaeoenvironmental records for a Late Cenozoic sedimentary sequence from Lanzhou, Northeastern margin of the Tibetan Plateau[J]. Global and Planetary Change, 2011, 76(3/4): 106-116.
    [47] 方小敏,奚晓霞,李吉均,等. 中国西部晚中新世气候变干事件的发现及其意义[J]. 科学通报,1997,42(23):2521-2524. [Fang Xiaomin, Xi Xiaoxia, Li Jijun, et al. Discovery of the Late Miocene aridity events in West China and its significance[J]. Chinese Science Bulletin, 1997, 42(23): 2521-2524.]
    [48] Sun J M, Zhang Z Q, Zhang L Y. New evidence on the age of the Taklimakan Desert[J]. Geology, 2009, 37(2): 159-162.
    [49] Chang H, An Z S, Liu W G, et al. Magnetostratigraphic and paleoenvironmental records for a Late Cenozoic sedimentary sequence drilled from Lop Nor in the eastern Tarim Basin[J]. Global and Planetary Change, 2012, 80-81: 113-122.
    [50] Sun J M, Gong Z J, Tian Z H, et al. Late Miocene stepwise aridification in the Asian interior and the interplay between tectonics and climate[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 421: 48-59.
    [51] Herbert T D, Lawrence K T, Tzanova A, et al. Late Miocene global cooling and the rise of modern ecosystems[J]. Nature Geoscience, 2016, 9(11): 843-847.
    [52] 聂军胜,李曼. 柴达木盆地晚中新世河湖相沉积物粒度组成及其古环境意义[J]. 第四纪研究,2017,37(5):1017-1026. [Nie Junsheng, Li Man. A grain size study on Late Miocene Huaitoutala section, NE Qaidam Basin, and implications for Asian monsoon evolution[J]. Quaternary Sciences, 2017, 37(5): 1017-1026.]
    [53] Sun J M, Liu W G, Liu Z H, et al. Extreme aridification since the beginning of the Pliocene in the Tarim Basin, western China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 485: 189-200.
    [54] Chang H, An Z S, Wu F, et al. Late Miocene - early Pleistocene climate change in the mid-latitude westerlies and their influence on Asian monsoon as constrained by the K/Al ratio record from drill core Ls2 in the Tarim Basin[J]. CATENA, 2017, 153: 75-82.
    [55] Tada R, Zheng H B, Sugiura N, et al. Desertification and dust emission history of the Tarim Basin and its relation to the uplift of northern Tibet[J]. Geological Society, London, Special Publications, 2010, 342: 45-65.
    [56] 孙有斌,安芷生. 最近7 Ma黄土高原风尘通量记录的亚洲内陆干旱化的历史和变率[J]. 中国科学(D辑):地球科学,2001,31(9):769-776. [Sun Youbin, An Zhisheng. History and variability of Asian interior aridity recorded by eolian flux in the Chinese Loess Plateau during the past 7 Ma[J]. Science China (Seri.D): Earth Sciences, 2001, 31(9): 769-776.]
    [57] Bosboom R E, Dupont-Nivet G, Houben A J P, et al. Late Eocene sea retreat from the Tarim Basin (west China) and concomitant Asian paleoenvironmental change[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 299(3/4): 385-398.
    [58] Bosboom R, Dupont-Nivet G, Grothe A, et al. Timing, cause and impact of the late Eocene stepwise sea retreat from the Tarim Basin (west China)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 403: 101-118.
    [59] Zachos J, Pagani M, Sloan L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 2001, 292(5517): 686-693.
    [60] Lu H, Wang X, Li L. Aeolian sediment evidence that global cooling has driven late Cenozoic stepwise aridification in central Asia[J]. Geological Society, London, Special Publications, 2010, 342: 29-44.
    [61] Zachos J C, Shackleton N J, Revenaugh J S, et al. Climate response to orbital forcing across the Oligocene-Miocene boundary[J]. Science, 2001, 292(5515): 274-278.
    [62] Li J J, Fang X M, Song C H, et al. Late Miocene-Quaternary rapid stepwise uplift of the NE Tibetan Plateau and its effects on climatic and environmental changes[J]. Quaternary Research, 2014, 81(3): 400-423.
    [63] Fang X M, Zan J B, Appel E, et al. An Eocene–Miocene continuous rock magnetic record from the sediments in the Xining Basin, NW China: Indication for Cenozoic persistent drying driven by global cooling and Tibetan Plateau uplift[J]. Geophysical Journal International, 2015, 201(1): 78-89.
    [64] 叶笃正,高由禧. 青藏高原气象学[M]. 北京:科学出版社,1979. [Ye Duzheng, Gao Youxi. Meteorology of the Tibet Plateau[M]. Beijing: Science Press, 1979.]
    [65] Rea D K, Snoeckx H, Joseph L H. Late Cenozoic Eolian deposition in the North Pacific: Asian drying, Tibetan uplift, and cooling of the northern hemisphere[J]. Paleoceanography, 1998, 13(3): 215-224.
    [66] Jiang H C, Wan S M, Ma X L, et al. End-member modeling of the grain-size record of Sikouzi fine sediments in Ningxia (China) and implications for temperature control of Neogene evolution of East Asian winter monsoon[J]. PLoS One, 2017, 12(10): e0186153.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700