用户名: 密码: 验证码:
迤纳厂矿床:一个“白云鄂博式”铁-铜-稀土矿床
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The Yinachang deposit in central Yunnan Province,Southwest China:A “Bayan Obo-type” Fe-Cu-REE deposit
  • 作者:温利刚 ; 曾普胜 ; 詹秀春 ; 范晨子 ; 孙冬阳 ; 王广 ; 袁继海 ; 费晓杰
  • 英文作者:WEN Ligang;ZENG Pusheng;ZHAN Xiuchun;FAN Chenzi;SUN Dongyang;WANG Guang;YUAN Jihai;FEI Xiaojie;National Research Center for Geoanalysis;Beijing General Research Institute of Mining and Metallurgy(BGRIMM)Technology Group;State Key Laboratory of Process Automation in Mining and Metallurgy;China University of Geosciences(Beijing);
  • 关键词:“白云鄂博式”矿床 ; 铁-铜-稀土矿床 ; 稀有稀土矿物 ; 迤纳厂 ; 滇中 ; AMICS
  • 英文关键词:"Bayan Obo-type" deposit;;Fe-Cu-REE deposit;;rare and rare-earth minerals;;Yinachang;;central Yunnan Province;;AMICS
  • 中文刊名:DXQY
  • 英文刊名:Earth Science Frontiers
  • 机构:国家地质实验测试中心;北京矿冶科技集团有限公司;矿冶过程自动控制技术国家重点实验室;中国地质大学(北京);
  • 出版日期:2018-09-28 13:59
  • 出版单位:地学前缘
  • 年:2018
  • 期:v.25;No.134
  • 基金:中国地质科学院基本科研业务费项目(YYWF201619,JYYWF20180101);; 中国地质调查局地质调查项目(DD20160220);中国地质调查局地质调查项目(12120113002500);; 国家自然科学基金项目(41072073);; 国土资源部公益性科研专项经费项目(201211078)
  • 语种:中文;
  • 页:DXQY201806030
  • 页数:22
  • CN:06
  • ISSN:11-3370/P
  • 分类号:314-335
摘要
云南武定迤纳厂铁-铜-稀土矿床是滇中地区具有代表性的元古宙铁-铜-稀土矿床之一。矿床中除了铁、铜资源外,还伴生有稀土、稀有()、钇、钼、钴等组分。研究表明:稀土元素含量在条纹条带状矿石和脉状矿石中均较高,ΣREE含量分别高达(1 446.83~11 259.23)×10~(-6)和(2 020.92~3 415.51)×10~(-6),尤其富集La、Ce等轻稀土元素;稀有()元素主要富集在条纹条带状矿石中,含量高达(278.8~529.0)×10~(-6)。由于矿床的矿物组成非常复杂,并且矿石中稀土、稀有()矿物含量相对较少,矿物结晶粒度细小,用传统的测试技术和方法很难识别鉴定,因此矿床的矿物学特征,尤其是稀土、稀有()矿物的赋存状态特征研究一直以来都较为棘手。论文应用矿物表征自动定量分析系统(AMICS),结合扫描电镜-能谱仪(SEM-EDS)显微结构原位分析技术,完成了常规岩矿鉴定手段难以完成的矿物定量识别和鉴定,在矿石中发现了含量可观的氟碳钙铈矿、氟碳铈矿和少量的独居石、褐帘石、铁矿、褐钇矿、硅钍钇矿、含金红石等稀有稀土矿物。其中,氟碳铈矿、独居石、铁矿、褐钇矿等主要富集于条纹条带状矿石中,与铁氧化物、磷灰石、萤石、菱铁矿和早期黄铜矿、黄铁矿等紧密共生;氟碳钙铈矿、褐帘石、硅钍钇矿、含金红石等主要局部富集在脉状矿石中,与石英、方解石、绿泥石和晚期黄铜矿、黄铁矿等紧密共生。显然,在铁氧化物和铜硫化物成矿两个阶段均伴随有稀土成矿作用。结合前人的研究成果,笔者将主矿化期划分为铁氧化物-磷灰石-稀土成矿阶段(Ⅱ-1)和铜硫化物(-金)-稀土成矿阶段(Ⅱ-2)。其中,氟碳铈矿、独居石、铁矿、褐钇矿等主要形成于Ⅱ-1阶段,其成矿作用可能与Columbia超大陆裂谷化-裂解有关;氟碳钙铈矿、褐帘石、硅钍钇矿、(含)金红石等则主要形成于Ⅱ-2阶段,其成矿作用可能与Rodinia超大陆裂解有关。对比研究发现,云南武定迤纳厂铁-铜-稀土矿床与白云鄂博超大型-铁-稀土矿床在大地构造背景、成矿元素组合、赋矿岩系、矿物组成、成矿时代、稀土来源等方面均有可对比性,初步确定云南武定迤纳厂铁-铜-稀土矿床是一个"白云鄂博式"矿床。
        The Yinachang Fe-Cu-REE deposit is one of representative Proterozoic Fe-Cu-REE deposits in central Yunnan,SW China.Besides Fe and Cu,rare-earth elements(REEs,mainly La,Ce),Nb,Y,Mo and Co coexist in the deposit.Study has shown that REE contents are relatively high in both banded and vein ores ranging in(1446.83-11259.23)×10~(-6) and(2020.92-3415.51)×10~(-6),respectively,with light REEs(e.g.,La,Ce)especially enriched.Also,the content of rare element Nb reaches up to(278.8-529.0)×10~(-6) in the banded ores.However,it has long been difficult to study mineral characteristics,especially occurrence characteristics,of rare and rare-earth minerals using traditional testing techniques,which were inadequate to identify these minerals due to complex mineral composition of ore deposit and relatively low mineral contents in ores.In this study,we used automated mineral identification and characterization system(AMICS)—the most up-to-date mineral automatic analysis system in mineralogy and geology in the world,combined with scanning electron microscope and X-ray energy dispersive spectrometer(SEM-EDS)microstructural in-situ analysis technique,to complete quantitative mineral identification in the Yinachang Fe-Cu-REE deposit,an undertaking unattainable by conventional means of rock-mineral identification.The results demonstrate that the deposit contains large quantities of parisites and bastnaesites and small quantities of monazites,allanites,columbites,fergusonites,yttrialites and Nb-bearing rutiles.Bastnaesites,monazites,columbite and fergusonite are mainly concentrated in the banded ores and closely associated with iron oxide minerals(magnetites),siderites,apatites,flourite and early sulfides such as chalcopyrite,pyrite,etc,while parisites,allanite,yttrialite and Nb-bearing rutile are enriched in vein ores coexisting mainly with chlorites,calcite,quartz and late sulfides such as chalcopyrite,pyrite,etc.Plainly,both iron oxide and copper sulfide mineralization stages are associated with REE mineralization.We identified two main mineralization stages,i.e.,iron oxide-apatite-REE(Ⅱ-1)and Cu sulfides(-Au)-REE(Ⅱ-2)mineralization stages,both were apparently related to the deep(mantle)magmatic activities:bastnaesites,monazites,columbite and fergusonite primarily formed in the Ⅱ-1 stage,likely during the breakup of the Columbia supercontinent;and parisites,allanite,yttrialite and Nb-bearing rutile mainly formed in the Ⅱ-2 stage,possibly during the breakup of the Rodinia supercontinent.Through comparative studies,we found that the Yinachang Fe-Cu-REE and giant Bayan Obo Nb-Fe-REE deposits are comparable in tectonic settings,metallogenic element assembles,ore-hosting rock series,mineral compositions,ore-forming ages and material sources.Therefore,we propose,preliminarily,that the Yinachang Fe-Cu-REE deposit is a"Bayan Obo-type"deposit.
引文
[1]温利刚,曾普胜,代艳娟,等.云南主要双峰式火山岩及相关矿产资源[J].地质学报,2017,91(11):2493-2520.
    [2]ZHOU M F,YAN D P,KENNEDY A K,et al.SHRIMPU-Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block,South China[J].Earth and Planetary Science Letters,2002,196(1/2):51-67.
    [3]ZHOU M F,ZHAO X F,CHEN W T,et al.Proterozoic Fe-Cu metallogeny and supercontinental cycles of the southwestern Yangtze Block,southern China and northern Vietnam[J].Earth-Science Reviews,2014,139:59-82.
    [4]杨时蕙.从磁铁矿内部结构探讨云南迤纳厂铁矿床的成因[J].中国地质科学院成都地质矿产研究所所刊,1982,3(1):137-147.
    [5]杨耀民,涂光炽,胡瑞忠.迤纳厂稀土铁铜矿床稀土元素地球化学[J].矿物学报,2004,24(3):301-308.
    [6]杨耀民,涂光炽,胡瑞忠,等.武定迤纳厂Fe-Cu-REE矿床Sm-Nd同位素年代学及其地质意义[J].科学通报,2005,50(12):1253-1258.
    [7]ZHAO X F,ZHOU M F,GAO J F,et al.In situ Sr isotope analysis of apatite by LA-MC-ICP-MS:constraints on the evolution of ore fluids of the Yinachang Fe-Cu-REE deposit,Southwest China[J].Mineralium Deposita,2015,50(7):871-884.
    [8]阙梅英.云南罗茨鹅头厂铁矿床主要铁矿物特征及矿床成因探讨[J].矿物岩石,1984,2(1):57-69.
    [9]李志群,赫荣安,陈耀光,等.云南省鹅头厂含铜铁矿床的地质特征、成矿作用和找矿前景探讨[J].矿产与地质,2004,18(6):537-540.
    [10]ZHAO X F,ZHOU M F,LI J W,et al.Late Paleoproterozoic to early Mesoproterozoic Dongchuan Group in Yunnan,SW China:implications for tectonic evolution of the Yangtze Block[J].Precambrian Research,2010,182(1/2):57-69.
    [11]ZHAO X F,ZHOU M F.Fe-Cu deposits in the Kangdian region,SW China:a Proterozoic IOCG(iron oxide-coppergold)metallogenic province[J].Mineralium Deposita,2011,46(7):731-747.
    [12]ZHAO X F,ZHOU M F,SU Z K,et al.Geology,geochronology,and geochemistry of the Dahongshan Fe-Cu-(Au-Ag)deposit,southwest China:implications for the formation of iron oxide copper-gold deposits in intracratonic rift settings[J].Economic Geology,2017,112(3):603-928.
    [13]杨红,刘福来,杜利林,等.扬子地块西南缘大红山群老厂河组变质火山岩的锆石U-Pb定年及其地质意义[J].岩石学报,2012,28(9):2994-3014.
    [14]杨红,刘平华,孟恩,等.扬子地块西南缘大红山群变质基性岩的地球化学研究及构造意义[J].岩石学报,2014,30(10):3021-3033.
    [15]ZHAO J H,ZHOU M F.Geochemistry of Neoproterozoic mafic intrusions in the Panzhihua district(Sichuan Province,SW China):implications for subduction-related metasomatism in the upper mantle[J].Precambrian Research,2007,152(1/2):27-47.
    [16]周家云,毛景文,刘飞燕,等.扬子地台西缘河口群钠长岩锆石SHRIMP年龄及岩石地球化学特征[J].矿物岩石,2011,31(3):66-73.
    [17]王冬兵,孙志明,尹福光,等.扬子地块西缘河口群的时代:来自火山岩锆石LA-ICP-MS U-Pb年龄的证据[J].地层学杂志,2012,36(3):630-635.
    [18]关俊雷,郑来林,刘建辉,等.四川省会理县河口地区辉绿岩体的锆石SHRIMP U-Pb年龄及其地质意义[J].地质学报,2011,85(4):482-490.
    [19]蒋小芳,王生伟,廖震文,等.元谋县路古模组变质基性火山岩锆石的U-Pb年龄及其对苴林群沉积时代的制约[J].地层学杂志,2013,37(4):624-625.
    [20]付宇,王生伟,孙晓明,等.云南元谋县黄瓜园花岗岩锆石LA-ICP-MS U-Pb定年和岩石地球化学及其地质意义[J].地质论评,2015,61(2):376-392.
    [21]杨斌,王伟清,董国臣,等.扬子地台西南缘康滇断隆带海孜双峰式侵入岩体年代学、地球化学及其地质意义[J].岩石学报,2015,31(5):1361-1373.
    [22]GREENTREE M R,LI Z X,LI X H,et al.Late Mesoproterozoic to earliest Neoproterozoic basin record of the Sibao orogenesis in western south China and relationship to the assembly of Rodinia[J].Precambrian Research,2006,151(1/2):79-100.
    [23]GREENTREE M R,LI Z X.The oldest known rocks in south-western China:SHRIMP U-Pb magmatic crystallisation age and detrital provenance analysis of the Paleoproterozoic Dahongshan Group[J].Journal of Asian Earth Sciences,2008,33(5/6):289-302.
    [24]张传恒,高林志,武振杰,等.滇中昆阳群凝灰岩锆石SHRIMP U-Pb年龄:华南格林威尔期造山的证据[J].科学通报,2007,52(7):818-824.
    [25]吴孔文.云南大红山层状铜矿床地球化学及成矿机制研究[D].贵阳:中国科学院地球化学研究所,2008:1-95.
    [26]LI X H,LI Z X,GE W C,et al.Neoproterozoic granitoids in South China:crustal melting above a mantle plume at ca.825Ma?[J].Precambrian Research,2003,122(1):45-83.
    [27]侯林,丁俊,邓军,等.云南武定迤纳厂铁铜矿岩浆角砾岩LA-ICP-MS锆石U-Pb年龄及其意义[J].地质通报,2013,32(4):580-588.
    [28]叶现韬,朱维光,钟宏,等.云南武定迤纳厂Fe-Cu-REE矿床的锆石U-Pb和黄铜矿Re-Os年代学、稀土元素地球化学及其地质意义[J].岩石学报,2013,29(4):1167-1186.
    [29]范宏鹏,朱维光,陈才杰.扬子地块西缘康滇地区古-中元古代地层和岩浆活动研究进展[J].地球科学与环境学报,2015,37(5):17-30.
    [30]HOU L,DING J,DENG J,et al.Geology,geochronology,and geochemistry of the Yinachang Fe-Cu-Au-REE deposit of the Kangdian region of SW China:evidence for a PaleoMesoproterozoic tectono-magmatic event and associated IOCG systems in the western Yangtze Block[J].Journal of Asian Earth Sciences,2015,103:129-149.
    [31]ZHAO X F,ZHOU M F,LI J W,et al.Sulfide Re-Os and Rb-Sr isotope dating of the Kangdian IOCG metallogenic province,Southwest China:implications for regional metallogenesis[J].Economic Geology,2013,108(6):1489-1498.
    [32]叶霖,刘玉平,李朝阳,等.云南武定迤纳厂铜矿含矿石英脉40 Ar-39 Ar年龄及其意义[J].矿物学报,2004,24(4):411-414.
    [33]丁俊,侯林.云南武定迤纳厂岩浆热液型铁-铜-金-稀土矿床流体特征研究[J].西北地质,2012,45(4):39-50.
    [34]侯林,丁俊,王长明,等.云南武定迤纳厂铁-铜-金-稀土矿床成矿流体与成矿作用[J].岩石学报,2013,29(4):1187-1202.
    [35]侯林,彭惠娟,丁俊.云南武定迤纳厂铁-铜-金-稀土矿床成矿物质来源:来自矿床地质与S、Pb、H、O同位素的制约[J].岩石矿物学杂志,2015,34(2):205-218.
    [36]侯林,丁俊,邓军,等.滇中武定迤纳厂铁铜矿床磁铁矿元素地球化学特征及其成矿意义[J].岩石矿物学杂志,2013,32(2):154-166.
    [37]LI X C,ZHOU M F.Multiple stages of hydrothermal REEremobilization recorded in fluorapatite in the Paleoproterozoic Yinachang Fe-Cu(-REE)deposit,Southwest China[J].Geochimica et Cosmochimica Acta,2015,166:53-73.
    [38]尹福光,孙志明,张璋.会理-东川地区中元古代地层-构造格架[J].地质论评,2011,57(6):770-778.
    [39]朱华平,范文玉,周邦国,等.论东川地区前震旦系地层层序:来自锆石SHRIMP及LA-ICP-MS测年的证据[J].高校地质学报,2011,17(3):452-461.
    [40]周邦国,王生伟,孙晓明,等.云南东川望厂组熔结凝灰岩锆石SHRIMP U-Pb年龄及其意义[J].地质论评,2012,58(2):359-368.
    [41]常向阳,朱炳泉,孙大中,等.东川铜矿床同位素地球化学研究:I.地层年代与铅同位素化探应用[J].地球化学,1997,26(2):37-43.
    [42]高林志,张恒,张传恒,等.滇东昆阳群地层序列的厘定及其在中国地层表的位置[J].地质论评,2018,64(2):283-298.
    [43]孙志明,尹福光,关俊雷,等.云南东川地区昆阳群黑山组凝灰岩锆石SHRIMP U-Pb年龄及其地层学意义[J].地质通报,2009,28(7):896-900.
    [44]ZHANG C H,GAO L Z,WU Z J,et al.SHRIMP U-Pb zircon age of tuff from the Kunyang Group in central Yunnan:evidence for Grenvillian orogeny in South China[J].Chinese Science Bulletin,2007,52(11):1517-1525.
    [45]CREELMAN R A,WARD C R.A scanning electron microscope method for automated,quantitative analysis of mineral matter in coal[J].International Journal of Coal Geology,1996,30(3):249-269.
    [46]LIU Y H,GUPTA R,SHARMA A,et al.Mineral matterorganic matter association characterisation by QEMSCANand applications in coal utilisation[J].Fuel,2005,84(10):1259-1267.
    [47]PASCOE R D,POWER M R,SIMPSON B.QEMSCAN analysis as a tool for improved understanding of gravity separator performance[J].Minerals Engineering,2007,20(5):487-495.
    [48]GU Y.Automated scanning electron microscope based Mineral Liberation Analysis an introduction to JKMRC/FEIMineral Liberation Analyser[J].Journal of Minerals and Materials Characterization and Engineering,2003,2(1):33-41.
    [49]FANDRICH R,GU Y,BURROWS D,et al.Modern SEM-based mineral liberation analysis[J].International Journal of Mineral Processing,2007,84(1/2/3/4):310-320.
    [50]REDWAN M,RAMMLMAIR D,MEIMA J A.Application of mineral liberation analysis in studying micro-sedimentological structures within sulfide mine tailings and their effect on hardpan formation[J].Science of the Total Environment,2012,414:480-493.
    [51]李波,梁冬云,张莉莉,等.自动矿物分析系统的统计误差分析[J].矿冶,2018,27(4):120-123.
    [52]GBLER H E,MELCHER F,GRAUPNER T,et al.Speeding up the analytical workflow for coltan fingerprinting by an integrated Mineral Liberation Analysis/LA-ICP-MS approach[J].Geostandards and Geoanalytical Research,2015,35(4):431-448.
    [53]温利刚,曾普胜,詹秀春,等.矿物表征自动定量分析系统(AMICS)技术在稀土稀有矿物鉴定中的应用[J].岩矿测试,2018,37(2):121-129.
    [54]温利刚.滇中地区前寒武纪铁-铜-稀土矿床稀有稀土元素赋存状态研究[D].北京:中国地质大学(北京),2018:1-135.
    [55]SUN S S,MCDONOUGH W F.Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J].Geological Society,London,Special Publication,1989,42(1):313-345.
    [56]黎彤.地壳元素丰度的若干统计特征[J].地质与勘探,1992,28(10):1-7.
    [57]杨耀民.中元古代昆阳群Fe-Cu-REE矿床地球化学研究[D].贵阳:中国科学院地球化学研究所,2004:1-86.
    [58]侯林.滇中“东川群”Fe-Cu-Au-REE成矿系统研究:以武定迤纳厂矿床为例[D].北京:中国地质大学(北京),2013:1-198.
    [59]梁冬云,李波.稀有金属矿工艺矿物学[M].北京:冶金工业出版社,2015:1-309.
    [60]杨波,丁俊,徐金沙,等.滇中武定迤纳厂铁铜多金属矿床中稀土、金的赋存状态特征研究[J].矿物岩石,2014,34(4):36-45.
    [61]SKUBLOV S,ASTAF’EV B,MARIN Y,et al.First find of cerianite in zircons from metasomatites of the Terskii greenstone belt,Baltic shield[J].Doklady Earth Sciences,2009,428(1):1134-1138.
    [62]WANG Q F,DENG J,LIU X F,et al.Discovery of the REE minerals and its geological significance in the Quyang bauxite deposit,west Guangxi,China[J].Journal of Asian Earth Sciences,2010,39(6):701-712.
    [63]吴健民,黄永平.稀矿山式铁铜矿床与奥林匹克坝式铜多金属矿床的对比研究[J].矿产与地质,1998,18(2):8-14.
    [64]ZHAO G C,CAWOOD P A,WILDE S A,et al.Review of global 2.1-1.8Ga orogens:implications for a pre-Rodinia supercontinent[J].Earth-Science Reviews,2002,59(1/2/3/4):125-162.
    [65]ZHAO G C,SUN M,WILDE S A,et al.Assembly,accretion and breakup of the Paleo-Mesoproterozoic Columbia supercontinent:records in the North China Craton[J].Gondwana Research,2003,6(3):417-434.
    [66]ZHAO G C,SUN M,WILDE S A,et al.A Paleo-Mesoproterozoic supercontinent:assembly,growth and breakup[J].Earth-Science Reviews,2004,67(1/2):91-123.
    [67]ROGERS J J W,SANTOSH M.Configuration of Columbia,a Mesoproterozoic supercontinent[J].Gondwana Research,2002,5(1):5-22.
    [68]ROGERS J J W,SANTOSH M.Tectonics and surface effects of the supercontinent Columbia[J].Gondwana Research,2009,15(3):373-380.
    [69]SANTOSH M,MARUYAMA S,YAMAMOTO S.The making and breaking of supercontinents:some speculations based on superplumes,super downwelling and the role of tectosphere[J].Gondwana Research,2009,15(3):324-341.
    [70]CONDIE K C.Breakup of a Paleoproterozoic supercontinent[J].Gondwana Research,2002,5(1):41-43.
    [71]李三忠,赵国春,孙敏.华北克拉通早元古代拼合与Columbia超大陆形成研究进展[J].科学通报,2016,61(9):919-925.
    [72]夏林圻.超大陆构造、地幔动力学和岩浆-成矿响应[J].西北地质,2013,46(3):1-38.
    [73]WATT G R,THRANE K.Early Neoproterozoic events in east Greenland[J].Precambrian Research,2001,110(1/2/3/4):165-184.
    [74]LI Z X,LI X H,ZHOU H W,et al.Grenvillian continental collision in south China:new SHRIMP U-Pb zircon results and implications for the configuration of Rodinia[J].Geology,2002,30(2):163-166.
    [75]ZHOU M F,YAN D P,WANG C L,et al.Subduction-related origin of the 750Ma Xuelongbao adakitic complex(Sichuan Province,China):implications for the tectonic setting of the giant Neoproterozoic magmatic event in South China[J].Earth and Planetary Science Letters,2006,248(1/2):286-300.
    [76]李献华,周汉文,李正祥,等.扬子块体西缘新元古代双峰式火山岩的锆石U-Pb年龄和岩石化学特征[J].地球化学,2001,30(4):315-322.
    [77]崔晓庄,江新胜,王剑,等.扬子西缘澄江组底部玄武岩形成时代新证据及其地质意义[J].岩石矿物学杂志,2015,34(1):1-13.
    [78]LI Z X,BOGDANOVA S V,COLLINS A S,et al.Assembly,configuration,and break-up history of Rodinia:a synthesis[J].Precambrian Research,2008,160(1):179-210.
    [79]XIA L Q,XIA Z C,XU X Y,et al.Mid-Late Neoproterozoic rift-related volcanic rocks in China:geological records of rifting and break-up of Rodinia[J].Geoscience Frontiers,2012,3(4):375-399.
    [80]TACK L,WINGATE M T D,LIéGEOIS J P,et al.Early Neoproterozoic magmatism(1000-910 Ma)of the Zadinian and Mayumbian Groups(Bas-Congo):onset of Rodinia rifting at the western edge of the Congo craton[J].Precambrian Research,2001,110(1/2/3/4):277-306.
    [81]王凯怡,杨奎峰,范宏瑞,等.白云鄂博矿床研究若干问题的探讨[J].地质学报,2012,86(5):687-699.
    [82]费红彩,肖荣阁,王安建.白云鄂博REE-Nb-Fe稀土矿赋矿岩系建造研究评述[J].地质学报,2012,86(5):757-766.
    [83]涂光炽.试论非常规超大型矿床物质组成、地质背景、形成机制的某些独特性:初谈非常规超大型矿床[J].中国科学:地球科学,1998,28(增刊2):1-6.
    [84]白鸽,袁忠信,吴澄宇,等.白云鄂博矿床地质特征和因论证[M].北京:地质出版社,1996:1-104.
    [85]王希斌,郝梓国,李震,等.白云鄂博:一个典型的碱性-碳酸岩杂岩的厘定[J].地质学报,2002,76(4):501-524.
    [86]朱祥坤,孙剑.内蒙古白云鄂博矿床的稀土矿化时代与期次[J].地球学报,2012,33(6):845-856.
    [87]肖荣阁,费红彩,王安建,等.白云鄂博含矿碱性火山岩建造及其地球化学[J].地质学报,2012,86(5):735-752.
    [88]杨晓勇,赖小东,任伊苏,等.白云鄂博铁-稀土-矿床地质特征及其研究中存在的科学问题:兼论白云鄂博超大型矿床的成因[J].地质学报,2015,89(12):2323-2350.
    [89]ROBERTS D E,HUDSON G R T.The Olympic Dam copper-uranium-gold-silver deposit,Roxby Downs,south Australia[J].Economic Geology,1983,78(5):799-822.
    [90]涂光炽.国外近年来铀矿找矿的成就:着重对奥林匹克坝矿床发现的评述[J].国外铀矿地质,1984,13(3):1-5.
    [91]JOHNSON J P,MCCULLOCH M T.Source of mineralizing fluids for the Olympic Dam deposit(south Australia):SmNd isotopic constraints[J].Chemical Geology,1995,121(1):177-199.
    [92]JOHNSON J P,CROSS K C.U-Pb geochronological constraints on the genesis of the Olympic Dam Cu-U-Au-Ag deposit,south Australia[J].Economic Geology,1995,90(5):1046-1063.
    [93]张永北,徐成彦,肖明远,等.滇中易门里士北部水下碳酸质火山-喷流岩铁、铜矿化及其大型隐伏矿床找矿研究[J].岩石学报,2005,21(5):1395-1408.
    [94]张永北,毕华,余龙师,等.滇中昆阳裂谷中段含矿白云石岩的交代地幔碳酸质岩浆喷发证据[J].自然科学进展,2008,18(7):778-788.
    [95]张永北,王豪,徐成彦,等.滇中昆阳群火成碳酸岩的发现及其意义[J].地质科技情报,1996,15(3):14-18.
    [96]HOU G T,SANTOSH M,QIAN X L,et al.Configuration of the late Paleoproterozoic supercontinent Columbia:insights from radiating mafic dyke swarms[J].Gondwana Research,2008,14(3):395-409.
    [97]LI H K,LU S N,SU W B,et al.Recent advances in the study of the Mesoproterozoic geochronology in the North China Craton[J].Journal of Asian Earth Sciences,2013,72(10):216-227.
    [98]LI Z X,POWELL C M.Anoutline of the Palaeogeographic evolution of the Australasian region since the beginning of the Neoproterozoic[J].Earth-Science Reviews,2001,53(3/4):237-277.
    [99]COLLINS A S,PISAREVSKY S A.Amalgamating eastern Gondwana:the evolution of the Circum-Indian orogens[J].Earth-Science Reviews,2005,71(3):229-270.
    [100]涂光炽.九十年代固体地球科学及超大型矿床研究若干进展[J].矿物学报,1997,17(4):357-363.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700