用户名: 密码: 验证码:
高氟铍矿浸出液共沉淀法除杂新工艺研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Co-Precipitation Purification New Process for Leaching Solution of Beryllium Ore Containing High Fluorine
  • 作者:马进 ; 桑利 ; 张恩玉 ; 贡大雷 ; 鲁兴武 ; 邵传兵
  • 英文作者:Ma Jin;Sang Li;Zhang Enyu;Gong Dalei;Lu Xingwu;Shao Chuanbing;Key Laboratory of New Process for Nonferrous Metal Smelting and Rare Metal High Utilization Efficiency in Gansu Province,Institute for Metallurgy and New Materials of Northwest Research Institute of Mining and Metallurgy;Xiang Guang Copper Co. ,Ltd;
  • 关键词:铍矿 ; 净化除杂 ; ; 共沉淀
  • 英文关键词:beryllium ores;;purification;;fluorine;;co-precipitation
  • 中文刊名:ZXJS
  • 英文刊名:Chinese Journal of Rare Metals
  • 机构:西北矿冶研究院冶金新材料研究所甘肃省有色金属冶炼新工艺及伴生稀散金属高效综合利用重点实验室;祥光铜业有限公司;
  • 出版日期:2015-05-15
  • 出版单位:稀有金属
  • 年:2015
  • 期:v.39;No.230
  • 基金:国家科技部科研院所技术开发研究专项资金项目(2011EG115010)资助
  • 语种:中文;
  • 页:ZXJS201505014
  • 页数:5
  • CN:05
  • ISSN:11-2111/TF
  • 分类号:87-91
摘要
目前在工业上,铍金属主要是从含铍矿物中提取,主要是绿柱石、硅铍石、羟硅铍石等。随着铍矿产资源的日益枯竭,必须寻找其他替代铍矿的资源,使铍矿物的使用范围继续扩大。然而,这些替代铍矿一般含有大量的萤石,矿石中氟含量很高;在生产工业氧化铍的冶炼过程中,通常要求矿石中氟铍比小于10%,矿石中的氟含量高,严重影响工业氧化铍的质量和冶炼回收率。因此如何脱除矿石浸出液中的氟,消除氟对冶炼过程的影响,是高氟铍矿冶炼过程的难点。本文对高含氟铍矿浸出液净化工艺进行研究,提出以共沉淀法对含铍浸出液进行净化。研究了在沉淀过程中,终点p H、温度、时间以及硫酸铵浓度等因素的影响;共沉淀条件为:p H=3.5~4.0、温度95℃、时间6 h、沉淀剂氨水浓度10%,沉淀经0.5 mol·L-1的硫酸铵溶液浆化洗涤;在此过程中,杂质铝、氟、铁的沉淀率在97%以上,铍的损失率在10%左右。
        Beryllium is usually extracted from mineral ores at present,and the minerals are mainly beryl,bertrandite or phenakite,etc.With the increasing depletion of beryllium mineral resources,alternative beryllium mineral resources should be sought,thus the exploitation of beryllium minerals continues to expand. However,these alternative beryllium minerals generally contain large amounts of fluorite,and the content of fluorine is very high in the ores; in the smelting process for producing industrial beryllium oxide,it is usually required that the fluorine to beryllium ratio of these minerals is less than 10%,and if the fluorine content in the minerals is high,it will seriously affect the quality of industrial beryllium oxide and smelting recovery rate. Therefore,it is the key to remove fluoride from leaching solution and thus eliminate the effect of fluoride during the fluoride beryllium minerals smelting process. The purification process of high fluorine beryllium minerals leaching solution was studied,and a co-precipitation method of purifying beryllium-containing leach solution was put forward. In the purification process,the influencing factors such as final p H,temperature,time,and concentration of ammonium sulfate were studied. The co-precipitation conditions were: p H = 3. 5 ~ 4. 0,temperature of 95 ℃,time of 6 h,precipitant( ammonia) concentration of 10%. The precipitate was slurried and washed using 0. 5 mol·L- 1ammonium sulfate. In this process,the impurity precipitation rates of aluminum,fluorine,iron were more than 97%,and the loss rate of beryllium was about 10%.
引文
[1]Lei X.Experimental study of fluoride removal in beryllium fluoride ore[J].Hunan Nonferrous Metals,2004,20(1):21.(雷湘.高氟铍矿石的脱氟试验研究[J].湖南有色金属,2004,20(1):21.)
    [2]Guo D Y,Song J J,Cai L,Cheng J,Mao Y.Formation of anomalous eutectic microstructure in Au-Sn eutectic alloy prepared by melt mixing[J].Chinese Journal of Rare Metals,2013,37(2):224.(郭德燕,宋佳佳,蔡亮,程军,毛勇.熔体混合金锡共晶合金非规则共晶组织的形成[J].稀有金属,2013,37(2):224.)
    [3]Liu S Y.Present status of beryllium production and its development and application[J].Rare Metals and Cemented Carbides,1998,12(4):56.(刘世友.铍的生产现状与应用开发[J].稀有金属与硬质合金,1998,12(4):56.)
    [4]Li A M,Jiang J G,Wang H,Fu J G.The latest development and prospects of beryllium minerals flotation[J].Rare Metals and Cemented Carbides,2008,36(3):58.(李爱民,蒋进光,王晖,符剑刚.含铍矿物浮选研究现状与展望[J].稀有金属与硬质合金,2008,36(3):58.)
    [5]Zhu W,Liu Z Q,Chen H J.Study on beryllium extraction from leaching solution with low-grade rare metal and rare earth complex mineral[J].Materials Research and Application,2010,4(4):387.(朱薇,刘志强,陈怀杰.从某低品位稀有、稀土复合矿浸出液中萃取铍的实验研究[J].材料研究与应用,2010,4(4):387.)
    [6]Quan J,Li C X.The overview development of beryllium metallurgical processes[J].Rare Metals and Cemented Carbides,2002,30(3):48.(全俊,李城星.我国铍冶金工艺发展概况[J].稀有金属与硬质合金,2002,30(3):48.)
    [7]Fu J G,Jiang J G,Li A M,Wang H.The latest development of beryllium extraction from beryllium-containing ore[J].Rare Metals and Cemented Carbides,2009,37(1):40.(符剑刚,蒋进光,李爱民,王晖.从含铍矿石中提取铍的研究现状[J].稀有金属与硬质合金,2009,37(1):40.)
    [8]Liu Y,Liu M D,Liu Z Z,Wan L.Experimental research on a new metallurgical process to treat low-grade beryllium concentrate[J].Rare Metals and Cemented Carbides,2014,42(2):13.(刘勇,刘牡丹,刘珍珍,万丽.低品位铍精矿冶金处理新工艺的实验研究[J].稀有金属与硬质合金,2014,42(2):13.)
    [9]Cheng Q H.Technology research and practice of beryllium oxide production from non-beryl beryllium ore[J].China Nonferrous Metallurgy,2006,(6):25.(成泉辉.非绿柱石被矿生产工业氧化被的工艺研究与实践[J].中国有色冶金,2006,(6):25.)
    [10]Li A M,Jiang J G,Wang H,Fu J G.The latest development and prospects of beryllium minerals flotation[J].Rare Metals and Cemented Carbides,2008,36(3):58.(李爱民,蒋进光,王晖,符剑刚.含铍矿物浮选研究现状与展望[J].稀有金属与硬质合金,2008,36(3):58.)
    [11]Li W,Ye H Q,Liu Z G.Study on the separation of fluorine from beryllium ore containing fluorine[J].Nonferrous Metals(Extractive Metallurgy),2004,(2):23.(李卫,叶红齐,刘振国.含氟铍矿石冶炼过程中氟的分离工艺研究[J].有色金属(冶炼部分),2004,(2):23.)
    [12]Quan J.Technologic measures for improvement of commercial Be O quality[J].Rare Metals and Cemented Carbides,2006,34(2):61.(全俊.提高工业氧化铍产品质量的工艺措施[J].稀有金属与硬质合金,2006,34(2):61.)
    [13]Andreev A A,D'yachenko A N,Kraidenko R I.Fluorination of beryllium concentrates with ammonium fluorides[J].Russian Journal of Applied Chemistry,2008,81(2):178.
    [14]Grunig James K,Davis William B,Aitkenhead William C.Extraction of beryllium from ores[P].US Patent,3699208,1972.
    [15]Samoilov V I,Borsuk A N,Kishlyanova A A.Improvement of the technology for processing of sulfate solutions produced in the stage of sulfuric acid breakdown of beryllium ore concentrates[J].Russian Journal of Applied Chemistry,2006,79(6):884.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700