用户名: 密码: 验证码:
溅射Cu-Zn-Sn金属预制层后硫()化法制备Cu_2ZnSn(S_xSe_(1-x))_4薄膜及其光伏特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Photovoltaic Characteristics of Cu_2ZnSn(S_xSe_(1-x))_4 Thin Films Synthesized via the Process of Cu-Zn-Sn Presputtering and Subsequent Sulfurization (Selenization) Annealing
  • 作者:刘仪柯 ; 唐雅琴 ; 蒋良兴 ; 刘芳洋 ; 秦勤 ; 张坤
  • 英文作者:LIU Yike;TANG Yaqin;JIANG Liangxing;LIU Fangyang;QIN Qin;ZHANG Kun;School of Materials and Metallurgical Engineering,Guizhou Institute of Technology;School of Metallurgy and Environment,Central South University;Gem Incorporated Company;
  • 关键词:薄膜太阳电池 ; 铜锌锡硫硒 ; 溅射预制层 ; 硫化 ; ; 退火制度
  • 英文关键词:thin film solar cell;;Cu2ZnSn(SxSe1-x)4;;presputtering;;sulfurization;;selenization;;annealing scheme
  • 中文刊名:CLDB
  • 英文刊名:Materials Review
  • 机构:贵州理工学院材料与冶金工程学院;中南大学冶金与环境学院;格林美股份有限公司;
  • 出版日期:2018-05-10
  • 出版单位:材料导报
  • 年:2018
  • 期:v.32
  • 基金:国家自然科学基金(51674298;51604088);; 贵州省科技计划项目(黔科合基础[2017]1064;; 黔科合LH字[2015]7091)
  • 语种:中文;
  • 页:CLDB201809003
  • 页数:6
  • CN:09
  • ISSN:50-1078/TB
  • 分类号:30-34+40
摘要
采用溅射工艺制备Cu-Zn-Sn金属预制层并尝试在多种退火方案(硫化退火、化退火、不同温度下硫化后化)下对其进行退火处理,探索出一种只需采用金属预制层即可完成CZTSSe制备的退火工艺制度。通过扫描电镜对比研究了不同退火制度下Cu_2ZnSn(S_xSe_(1-x))_4薄膜的形貌差异,发现低温硫化后化工艺可以有效减少因硫化温度过高引起的薄膜中孔洞较多的问题,有利于薄膜的平整与致密化。在此基础上,采用X射线荧光光谱、扫描电镜、X射线衍射及拉曼光谱对不同硫化温度(200℃、300℃、400℃、500℃)下硫化后化工艺制备的Cu_2ZnSn(S_xSe_(1-x))_4薄膜的成分、形貌、物相结构及结晶性能进行了表征和分析。结果表明,300℃下硫化后化获得的Cu_2ZnSn(S_xSe_(1-x))_4较其他温度下硫化后化获得的产物有着更好的形貌及结晶性能,其器件的光电转换效率为2.09%,远高于500℃下硫化后化工艺所得薄膜器件的效率(0.94%)。
        By applying several annealing schemes(sulfurization,selenization,sulfurization at various temperatures→selenization)to the annealing process of the magnetron sputtered Cu-Zn-Sn coating,this work made a successful attempt to develop an annealing scheme that enables the production of CZTSSe thin film on the basis of merely apresputtered metallic coating.We conducted the morphological analyses upon the Cu_2ZnSn(S_xSe_(1-x))_4 films formed through different annealing schemes and revealed that a relatively low sulfurization temperatures can benefit the flatness and densification of the resultant film by attenuating the heat-induced porosification effect.A comparative study was then carried out upon the effect of the sulfurization temperature(200 ℃,300 ℃,400℃,500 ℃)on the properties of Cu_2ZnSn(S_xSe_(1-x))_4 thin films,by measuring the films' composition,morphology,structure and crystallinity via XRF,SEM,XRD and Raman scattering.Among the above competitors,the Cu_2ZnSn(S_xSe_(1-x))_4 film obtained with300 ℃ sulfurization→selenization exhibits the most favorable morphology and crystallinity,as well as a power conversion efficiency of 2.09% which far outperforms the one with 500 ℃ sulfurization→selenization(0.94%)owing to the boost of short-circuit current and fill factor.
引文
1 Todorov T,Gunawan O,Chey S J,et al.Progress towards marketable earth-abundant chalcogenide solar cells[J].Thin Solid Films,2011,519(21):7378.
    2 Sun Y X,Zhang Y Z,Wang H,et al.Novel non-hydrazine solution processing of earth-abundant Cu2ZnSn(S,Se)4 absorbers for thinfilm solar cells[J].Journal of Materials Chemistry A,2013,1(23):6880.
    3 Kim J,Hiroi H,Todorov T K,et al.High efficiency Cu2ZnSn(S,Se)4solar cells by applying a double In2S3/CdS emitter[J].Advanced Materials,2014,26(44):7427.
    4 Zhang K,Liu F Y,Lai Y Q,et al.In situ growth and characterization of Cu2ZnSnS4thin films by reactive magnetron co-sputtering for solar cells[J].Acta Physica Sinica,2011,60(2):790(in Chinese).张坤,刘芳洋,赖延清,等.太阳电池用Cu2ZnSnS4薄膜的反应溅射原位生长及表征[J].物理学报,2011,60(2):790.
    5 Ericson T,Kubart T,Scragg J J,et al.Reactive sputtering of precursors for Cu2ZnSnS4thin film solar cells[J].Thin Solid Films,2012,520(24):7093.
    6 Weber A,Mainz R,Schock H W.On the Sn loss from thin films of the material system Cu-Zn-Sn-S in high vacuum[J].Journal of Applied Physics,2010,107(1):013516.
    7 Wang K,Gunawan O,Todorov T,et al.Thermally evaporated Cu2-ZnSnS4solar cells[J].Applied Physics Letters,2010,97(14):143508.
    8 Chan C P,Lam H,Surya C.Preparation of Cu2ZnSnS4films by electrodeposition using ionic liquids[J].Solar Energy Materials and Solar Cells,2010,94(2):207.
    9 Riha S C,Fredrick S J,Sambur J B,et al.Photoelectrochemical characterization of nanocrystalline thin-film Cu2 ZnSnS4 photocathodes[J].ACS Applied Materials&Interfaces,2011,3(1):58.
    10 Sun K W,Su Z H,Han Z L,et al.Fabrication of flexible Cu2ZnSnS4(CZTS)solar cells by sulfurizing precursor films deposited via successive ionic layer absorption and reaction method[J].Acta Physica Sinica,2014,63(1):018801(in Chinese).孙凯文,苏正华,韩自力,等.连续离子层吸附反应沉积后硫化法制备柔性铜锌锡硫薄膜太阳电池[J].物理学报,2014,63(1):018801.
    11 Todorov T K,Tang J,Bag S,et al.Beyond 11%efficiency:Characteristics of state-of-the-art Cu2ZnSn(S,Se)4solar cells[J].Advanced Energy Mate-rials,2013,3(1):34.
    12 Xie M,Zhuang D M,Zhao M,et al.Fabrication of Cu2ZnSnS4thin films using a ceramic quaternary target[J].Vacuum,2014,101:146.
    13 Chawla V,Clemens B.Effect of composition on high efficiency CZTSSe devices fabricated using Co-sputtering of compound targets[C]∥38th IEEE Photovoltaic Specialists Conference.Austin,2012:2990.
    14 Kim G Y,Jeong A R,Kim J R,et al.Surface potential on grain boundaries and intragrains of highly efficient Cu2ZnSn(S,Se)4thinfilms grown by two-step sputtering process[J].Solar Energy Materials and Solar Cells,2014,127:129.
    15 Sun L,He J,Chen Y,et al.Comparative study on Cu2ZnSnS4thin films deposited by sputtering and pulsed laser deposition from a single quaternary sulfide target[J].Journal of Crystal Growth,2012,361:147.
    16 Green M A,Emery K,Hishikawa Y,et al.Solar cell efficiency tables(version 43)[J].Progress in Photovoltaics,2014,22(1):1.
    17 Fairbrother A,FontanéX,Izquierdo R V,et al.Single-step sulfoselenization method to synthesize Cu2ZnSn(SySe1-y)4 absorbers from metallic stack precursors[J].ChemPhysChem,2013,14(9):1836.
    18 Schurr R,H9lzing A,Jost S,et al.The crystallisation of Cu2ZnSnS4thin film solar cell absorbers from co-electroplated Cu-Zn-Sn precursors[J].Thin Solid Films,2009,517(7):2465.
    19 Zhong J,Xia Z,Luo M,et al.Sulfurization induced surface constitution and its correlation to the performance of solution-processed Cu2ZnSn(S,Se)4solar cells[J].Scientific Reports,2014,4:6288.
    20 Yin X S,Tang C H,Sun L F,et al.Study on phase formation mechanism of non-and near-stoichiometric CZTSSe film prepared by selenization of Cu-Sn-Zn-S precursors[J].Chemistry of Materials,2014,26(6):2005.
    21 Li J B,Chawla V,Clemens B M.Investigating the role of grain boundaries in CZTS and CZTSSe thin film solar cells with scanning probe microscopy[J].Advanced Materials,2012,24(6):720.
    22 Li J W,Mitzi D B,Shenoy V B.et al.Structure and electronic properties of grain boundaries in earth-abundant photovoltaic absorber Cu2ZnSnSe4[J].ACS Nano,2011,5(11):8613.
    23 Winkler M T,Wang W,Gunawan O,et al.Optical designs that improve the efficiency of Cu2ZnSn(S,Se)4solar cells[J].Energy&Environmental Science,2014,7:1029.
    24 Grossberg M,Krustok J,Raudoja J,et al.Photoluminescence and Raman study of Cu2ZnSn(SexS1-x)4 monograins for photovoltaic applications[J].Thin Solid Films,2011,519(21):7403.
    25 Redinger A,Hones K,Fontane X,et al.Detection of a ZnSe secondary phase in coevaporated Cu2ZnSnSe4thin films[J].Applied Physics Letters,2011,98(10):101907.
    26 Fernandes P A,Salome P M P,Cunha A F,et al.Study of polycrystalline Cu2ZnSnS4films by Raman scattering[J].Journal of Alloys and Compounds,2011,509(28):7600.
    27 Mitzi D B,Gunawan O,Todorov T K,et al.The path towards a high-performance solution-processed kesterite solar cell[J].Solar Energy Materials and Solar Cells,2011,95(6):1421.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700