用户名: 密码: 验证码:
微波法制备铜锌锡硫的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Progress of Cu_2ZnSnS_4 Prepared by Microwave Method
  • 作者:沈韬 ; 柴鲜花 ; 孙淑红 ; 朱艳
  • 英文作者:SHEN Tao;CHAI Xianhua;SUN Shuhong;ZHU Yan;Faculty of Information Engineering and Automation,Kunming University of Science and Technology;Faculty of Materials Science and Engineering,Kunming University of Science and Technology;
  • 关键词:微波 ; Cu_2ZnSnS_4 ; 粉体 ; 薄膜
  • 英文关键词:microwave;;Cu_2ZnSnS_4;;particles;;thin film
  • 中文刊名:CLDB
  • 英文刊名:Materials Reports
  • 机构:昆明理工大学信息与自动化工程学院;昆明理工大学材料科学与工程学院;
  • 出版日期:2019-06-27
  • 出版单位:材料导报
  • 年:2019
  • 期:v.33
  • 基金:国家自然科学基金(61764010;61671225);; 云南省重点基金(2018FA034)~~
  • 语种:中文;
  • 页:CLDB201913009
  • 页数:8
  • CN:13
  • ISSN:50-1078/TB
  • 分类号:56-63
摘要
尽管以铜铟镓(CIGS)和碲化镉(CdTe)为代表的第二代薄膜太阳能电池已成功实现商业化,截至目前,以CIGS为吸收层的电池的效率已经突破23%,但由于In元素稀缺,Cd元素有剧毒,限制了该电池的大规模生产。铜锌锡硫(Cu2ZnSnS4,CZTS)是一种直接带隙半导体,因具有禁带宽度合适、光吸收系数高、组分无毒和储量丰富等优点,而成为目前太阳能电池中最具有潜力的吸收层材料之一。目前以CZTS为吸收层的太阳能电池的效率已突破12%,已接近于商业化的多晶硅太阳能电池的效率。目前,CZTS粉体的制备方法主要为以溶剂热法、一锅法和热注入法为代表的溶液法。由于这些方法需要昂贵的仪器设备、复杂的操作顺序、较长的反应时间,且易产生杂相,严重制约着生产效率的提高。微波法也是一种溶液化学反应法,由于具有反应速度快、操作简单、效率高、加热均匀、能够减小热梯度等优势,近年在太阳能电池材料制备领域引起了广泛关注。微波法制备CZTS薄膜通常有一步成膜和两步成膜两种途径。两步成膜法先通过微波合成CTZS的粉体,再将粉体分散之后通过旋涂等方法获得CZTS的薄膜。采用这种方法得到的薄膜更加均匀、致密、稳定。然而,CZTS属于四元化合物,化学计量比的少量偏离就很容易产生其他杂相,因此如何减少和控制杂相的生成,制备纯相、形貌可控的CZTS纳米晶体并将其应用于薄膜太阳能电池显得至关重要。最近几年,除了研究CZTS对器件性能的影响外,研究者们主要从选择合适的有机溶剂、原料配比、反应时间、反应温度及表面活性剂等制备工艺方面不断尝试,并取得了丰硕的成果,在充分发挥微波法反应速度快、操作简单、效率高、加热均匀优势的同时大幅提升了器件效率。目前,以微波法合成的CZTS为吸收层材料制备的太阳能电池的转换效率已从最初的0.25%快速提高到4.92%。本文综述了近年来微波法制备CZTS粉末和CZTS薄膜的主要方法,总结了原料配比、溶剂、反应温度、反应时间和表面活性剂等对产物形貌、结构、光学性能等的影响,并对微波法制备CZTS的发展前景进行了展望,以期为制备更高转换效率的CZTS基太阳能电池提供参考。
        Although second-generation thin-film solar energy represented by copper indium gallium selenide(CIGS) and cadmium telluride(CdT e) has been successfully commercialized.Moreover,the power conversion efficiency(PCE) with CIGS as the absorption layer has exceeded 23%,but,due to the scarcity of the In element,the Cd element is highly toxic,which limits its mass production. Cu_2ZnSnS_4,CZTS is a kind of direct band gap semiconductor. Because of its suitable band gap width,high light absorption coefficient,non-toxic components and abundant reserves,it is the most potential absorbing layer material in solar cells. At present,PCE with CZTS as the absorption layer has exceeded 12%,and this efficiency is close to the current commercial polycrystalline silicon solar cells.Nowadays,the main preparation method of CZTS powder is a solution reaction represented by solvothermal method,one-pot method and hot injection method. Because these methods require expensive equipment,complicated operation sequence,long reaction time,and easy generation of miscellaneous phases,the production efficiency is seriously restricted. Microwave heating is one of the solution chemical reaction methods,but this method has attracted extensive attention in the field of solar cell material preparation in recent years due to its advantages of fast reaction speed,simple operation,high efficiency,uniform heating,and reduced thermal gradient. The CZTS film prepared by microwave heating has two methods of one-step film formation and two-step film formation. The two-step film formation method refers to first synthesizing the powder of CTZS by microwave,and then dispersing the powder and then obtaining the film by spin coating or other methods. However,CZTS belongs to the quaternary compound,and the small deviation of the stoichiometric ratio makes it easy to produce other heterophases. Therefore,how to reduce and control the formation of the heterophase,and prepare the CZTS nanocrystals with pure phase and controllable morphology,and its application to thin film solar cells is crucial. In recent years,in addition to studying the impact of CZTS on device performance,researchers have been trying to select suitable organic solvents,raw material ratios,reaction times,reaction temperatures and surfactants,and have obtained many excellent results. In the full use of the microwave method,the reaction speed is fast,the operation is simple,the efficiency is high,and the heating uniformity is advantageous,and the device efficiency is greatly improved. At present,the conversion efficiency of solar cells prepared by microwave synthesis of CZTS as the absorption layer material of thin film solar cells has rapidly increased from the initial 0.25% to 4.92%.In this paper,the main methods of preparing CZTS powder and CZTS film by microwave method in recent years are reviewed. The effects of raw material ratio,solvent,reaction temperature,reaction time and surfactant on the morphology,structure and optical properties of the product are summarized. The development prospect of CZTS preparation is prospected,in order to provide reference for the preparation of CZTS-based solar cells with higher conversion efficiency.
引文
1 Qing H M,Zhu Y,Hu Y M,et al.Materials Letters,2016,176,177.
    2 Talapin D V,Lee J S,Kovalenko M V,et al.Chemical Reviews,2010,110,389.
    3 Habas S E,Platt H A S,Hest M F A M V,et al.Chemical Reviews,2010,110,6571.
    4 Jackson P,Hariskos D,Lotter E,et al.Progress in Photovoltaics:Research and Applications,2011,19,894.
    5 Guchhait A,Dewi H A,Leow S W,et al.ACS Energy Letters,2017,2,807.
    6 Li Z G,Lui A L K,Lam K H,et al.Inorganic Chemistry,2014,53,10874.
    7 Li M,Zhou W H,Guo J,et al.The Journal of Physical Chemistry C,2012,116,26507.
    8 Katagiri H,Jimbo K,Maw W S,et al.Thin Solid Films,2009,517,2455.
    9 Steinhagen C,Panthani M G,Akhavan V,et al.Journal of the American Chemical Society,2009,131,12554.
    10 Shi C,Shi G,Chen Z,et al.Materials Letters,2012,73,89.
    11 Moholkar A V,Shinde S S,Babar A R,et al.Solar Energy,2011,85,1354.
    12 Tao J,Liu J,Chen L,et al.Green Chemistry,2016,18,550.
    13 Li J,Wang H,Luo M,et al.Solar Energy Materials & Solar Cells,2016,149,242.
    14 Zhou X,Meng W,Dong C,et al.RSC Advances,2015,5,90217.
    15 Zhou Y L,Zhou W H,Li M,et al.The Journal of Physical Chemistry C,2011,115,19632.
    16 Liu W,Guo B,Mak C,et al.Thin Solid Films,2013,535,39.
    17 Wu S H,Shih C F,Pan H C,et al.Thin Solid Films,2013,544,19.
    18 Tanaka K,Moritake N,Uchiki H.Solar Energy Materials & Solar Cells,2007,91,1199.
    19 Park H,Bae B S,Hwang Y H.Journal of Sol-Gel Science and Technology,2013,65,23.
    20 Chen D,Zhao Y,Chen Y,et al.ACS Applied Materials Interfaces,2015,7,24403.
    21 Xia D,Zheng Y,Lei P,et al.Physics Procedia,2013,48,228.
    22 Shin S W,Han J H,Park C Y,et al.Journal of Alloys and Compounds,2012,516,96.
    23 Wang W,Shen H,He X.Materials Research Bulletin,2013,48,3140.
    24 Knutson T R,Hanson P J,Aydilb E S,et al.Chem Commun (Communication),2014,50,5902.
    25 Long F,Mo S Y,Zeng Y,et al.International Journal of Photoenergy,DOI:10.1155/2014/618789.
    26 Washington A L,Strouse G F.Chemistry of Materials,2009,21,2770.
    27 Sun C,Richard D W,Long G,et al.International Journal of Chemical Engineering,DOI:10.1155/2011/545234.
    28 Mitzi D B,Gunawan O,Todorov T K,et al.Solar Energy Materials and Solar Cells,2011,95,1421.
    29 Yu K,Carter E A.Chemistry of Materials,2015,27,2920.
    30 Zhou J,You L,Li S,et al.Materials Letters,2012,81,248.
    31 Nguyen D C,Ito S,Dung D V A.Journal of Alloys and Compounds,2015,632,676.
    32 Ma G,Minegishi T,Yokoyama D,et al.Chemical Physics Letters,2011,501,619.
    33 Qiao Qing.Synthesis and photoelectic properties study of Cu2ZnSn(S,Se)4 thin films.Master's Thesis,Henan University,China,2015(in Chinese).乔青.液相法制备铜锌锡硫硒薄膜及其光电性能研究.硕士学位论文,河南大学,2015.
    34 Amaya I,Correa R .Revista De Ingeniería,2016,38,33.
    35 Lu Kai.Agricultural Science & Technology and Equipment,2007(1),61 (in Chinese).卢凯.农业科技与装备,2007(1),61.
    36 Xia Xiang,Chen Zuxing,Tan Jie.Mining and Metallurgy in Hainan,2001(2),47 (in Chinese).夏湘,陈祖兴,谭杰.海南矿冶,2001(2),47.
    37 Yang Jin.Construction Machinery & Maintenance,2006(4),89 (in Chinese).杨瑾.工程机械与维修,2006(4),89.
    38 Bo Jiajun,Cheng Xinyao.Vacuum Electronics,1988(1),58 (in Chinese).鲍家俊,程信尧.真空电子技术,1988(1),58.
    39 Tian Z Q,Jiang S P,Liang Y M,et al.The Journal of Physical Chemistry B,2006,110,5343.
    40 Pallavkar S,Kim T H,Lin J,et al.Industrial & Engineering Chemistry Research,2010,49,8461.
    41 Wang K C,Chen P,Tseng C M.Crystengcomm,2013,15,9863.
    42 Li Xinhao.A study on the nature of microwave accelerated organic reactions.Master's Thesis,Beijing University of Chemical Technology,China,2016(in Chinese).李昕皓.微波加速有机反应的本质研究.硕士学位论文,北京化工大学,2016.
    43 Kumar R S,Hong C H,Kim M D.Advanced Powder Technology,2014,25,1554.
    44 Lin Y H,Das S,Yang C Y,et al.Journal of Alloys and Compounds,2015,632,354.
    45 Gong Z,Han Q,Li J,et al.Journal of Alloys and Compounds,2016,663,617.
    46 Ghediya P R,Chaudhuri T K.Journal of Physics D Applied Physics,2015 48,455109
    47 Flynn B,Wang W,Chang C H,et al.Physica Status Solidi (a),2012,209,2186.
    48 Saravana Kumar R,Ryu B D,Chandramohan S,et al.Materials Letters,2012,86,174.
    49 Shin S W,Han J H,Park C Y,et al.Journal of Alloys and Compounds,2012,541,192.
    50 Sarswat P K,Free M L.Journal of Crystal Growth,2013,372,87.
    51 Chen W C,Tunuguntla V,Chiu M H,et al.Solar Energy Materials and Solar Cells,2017,161,416.
    52 Madiraju V A,Taneja K,Kumar M,et al.Journal of Materials Science:Materials in Electronics,2015,27,3152.
    53 Wang W,Shen H,He X,et al.Journal of Nanoparticle Research,2014,16,2437.
    54 Kandare S P,Dhole S D,Bhoraskar V N,et al.In:The Dae Solid State Physics Symposium.AIP Publishing LLC,2016,pp.174.
    55 Patro B,Vijaylakshmi S,Sharma P.In:The Conference Record of the 2015 on Dae Solid State Physics Symposium.AIP Publishing LLC,2016,pp.28.
    56 Pinto A H,Shin S W,Isaac E,et al.Journal of Materials Chemistry 2017,5,23179.
    57 Tao W,Wei A,Zhao Y,et al.Journal of Materials Science:Materials in Electronics,2016,28,3407.
    58 Wang W,Shen H,Jiang F,et al.Journal of Materials Science:Materials in Electronics,2012,24,1813.
    59 Ansari M Z,Khare N.In:the International Conference on Condensed Matter & Applied Physics.AIP Publishing LLC,2016,pp.1.
    60 Wang W,Shen H,Yao H,et al.Journal of Materials Science:Materials in Electronics,2015,26,1449.
    61 Yang X,Xu J,Yang Q,et al.Journal of Nanoparticle Research,2012,14,1.
    62 Zhao Y,Tao W,Chen X,et al.Journal of Materials Science:Materials in Electronics,2015,26,5645.
    63 Yan X,Michael E,Komarneni S,et al.Ceramics International,2014,40,1985.
    64 Long F,Chi S,He J,et al.Journal of Solid State Chemistry,2015,229,228.
    65 Yang H,Su X,Tang A.Materials Research Bulletin,2007,42,1357.
    66 Zhao Y,Tao W,Liu J,et al.Materials Letters,2015,148,63.
    67 Li Q,Weia A X,Tao W K,et al.Chalcogenide Letters,2017,14,465.
    68 Ghediya P R,Chaudhuri T K.Journal of Materials Science:Materials in Electronics,2014,26,1908.
    69 Martini T,Chubilleau C,Poncelet O,et al.Solar Energy Materials & Solar Cells,2016,144,657.
    70 Wang W,Shen H,Wong L H,et al.RSC Advances,2016,6,54049.
    71 Zhou Z,Zhang P,Lin Y,et al.Nanoscale Research Letters,2014,9,477.
    72 Guo Q,Hillhouse H W,Agrawal R.Journal of the American Chemical Society,2009,131,11672.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700