NaF-NaCl-KCl熔盐体系中铝热还原法制备Al-Sc合金
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation of Al-Sc Alloys by Aluminum Thermite Reaction in NaF-NaCl-KCl Melt
  • 作者:甘培原 ; 张建飞 ; 刘东梅 ; 谢营邦 ; 詹海鸿 ; 刘晨
  • 英文作者:GAN Pei-yuan;ZHANG Jian-fei;LIU Dong-mei;XIE Ying-bang;ZHAN Hai-hong;LIU Chen;Guangxi Research Institute of Metallurgy;
  • 关键词:NaF-NaCl-KCl熔盐 ; Al-Sc合金 ; ScF3 ; Al3Sc ; 热力学
  • 英文关键词:NaF-NaCl-KCl melt;;Al-Sc alloy;;scandium fluoride;;Al3Sc;;thermodynamics
  • 中文刊名:XTZZ
  • 英文刊名:Chinese Rare Earths
  • 机构:广西冶金研究院;
  • 出版日期:2017-02-15
  • 出版单位:稀土
  • 年:2017
  • 期:v.38;No.228
  • 基金:广西区直科技型企业科研成果转化资金项目(2015-1-1);; 广西壮族自治区八桂学者建设工程专项(桂办发[2010]51号)
  • 语种:中文;
  • 页:XTZZ201701009
  • 页数:6
  • CN:01
  • ISSN:15-1099/TF
  • 分类号:55-60
摘要
在Na F-NaCl-KCl熔盐体系熔融状态下,用铝热法还原氟化钪制备出钪含量2.37%~8.13%的铝钪合金。引入金属间化合物Al3Sc作为生成物对反应式进行修正,热力学计算结果表明,该反应在1033 K温度下可以进行,且反应焓变为负值,反应放热。设计正交实验分别考察保温温度、保温时间与钪投入量三个因素对钪回收率的影响;设计单因素实验考察保温温度对钪回收率的影响。结果显示,在1033 K、钪投入量3%、保温1 h条件下得到最高钪回收率为94.13%。保温温度是钪回收率的主要影响因素,回收率随温度升高先上升后降低。钪投入量是钪回收率的次要影响因素,回收率随投入量增加而降低。保温时间对钪回收率的影响最小,延长保温时间能少量提高回收率,超过1h后回收率不再上升。
        Al- Sc alloys with 2. 37% ~ 8. 13% Sc content were prepared by aluminum thermite reaction with Sc F3 in NaF-NaCl-KCl molten salt system. Introducing the Al3 Sc intermetallic as a product to amend the formula,the thermodynamic calculation at 1033 K suggested that Al was able to react with Sc F3 in the condition. The negative standard enthalpy of the reaction at 1033 K revealed that the reaction was exothermal. A series of orthogonal experiments including three factors which were reaction temperature,reaction period and feed capacity of Sc were arranged for the purpose of revealing the influence of the factors on recovery of Sc. Single factor experiments were also employed to inspect the effect of reaction temperature on the recovery independently. The results show that the maximum recovery,which is high up to 94. 13%,is obtained at 1033 K with 3% feed capacity for 1 hour reaction period. The results also reveal that reaction temperature is the major influence on recovery,which rises first then fall with temperature elevating. Feed capacity of Sc is the secondary influence on recovery,which falls with its increasing. Reaction period is the least influence on recovery,which can be promoted in certain degree by reaction period extending,but it hardly works for more than 1 hour.
引文
[1]Royset J.Scandium in aluminium alloys:physical metallurgy,properties and applications[J].Metallurgical Science and Technology,2007,25(2):11-21.
    [2]Davydov V G,Rostova T D,Zakharov V V,et al.Scientific principles of making an alloy addition of scandium to aluminium alloys[J].Materials Science and Engineering A,2000,280(1):30-36.
    [3]Jindal V,De P K,Venkateswarlu K.Effect of Al3Sc precipitates on the work hardening behavior of aluminumscandium alloys[J].Materials Letters,2006,60(28):3373-3375.
    [4]王新宇,潘青林,周昌荣,等.含钪铝锂合金的研究与发展[J].稀土,2005,26(6):70-75.Wang X Y,Pan Q L,Zhou C R,et al.Recent situation and development trend of Sc containing Al-Li alloy[J].Chinese Rare Earths,2005,26(6):70-75.
    [5]姜锋,尹志民,李广汉.铝钪中间合金的制备方法[J].稀土,2001,22(1):41-44.Jiang F,Yin Z M,Li H G.Preparation methods of scandium-bearing master alloys[J].Chinese Rare Earths,2001,22(1):41-44.
    [6]杨少华,邱竹贤,张明杰.铝钪合金的应用及生产[J].轻金属,2006,(4):55-57.Yang S H,Qiu Z X,Zhang M J.Application and production of Al-Sc alloy[J].Light Metals,2006,(4):55-57.
    [7]尹志民,潘清林,姜锋,等.钪和含钪合金[M].长沙:中南大学出版社,2007.224-234.Yin Z M,Pan Q L,Jiang F,et al.Scandium and Its Alloys[M].Changsha:Central South University Press,2007.224-234.
    [8]姜锋,尹志民,李汉广,等.氯化钪—氯化—镁热还原法制备钪中间合金新工艺研究[J].稀土,2001,22(3):34-36.Jiang F,Yin Z M,Li H G,et al.Study on the new preparation method of Sc-bearing master alloys by magnesium thermoreduction[J].Chinese Rare Earths,2001,22(3):34-36.
    [9]陈晓鸣,张宗华,张桂芳.铝镁热还原无水氯化钪熔盐制备铝镁钪中间合金工艺试验研究[J].稀土,2009,30(3):62-65.Chen X O,Zhang Z H,Zhang G F.Study on technological test of preparation of Al-Mg-Sc-bearing master alloy by aluminum-magnesium thermal reduction on anhydrous scandium chloride molten salt[J].Chinese Rare Earths,2009,30(3):62-65.
    [10]路贵民,刘学山.氧化钪在n Na F·Al F3-Sc F3熔盐体系中的溶解[J].中国有色金属学报,1999,9(3):624-626.Lu G M,Liu X S.Dissolution of Sc2O3in fluoride molten salt[J].The Chinese Journal of Nonferrous Metals,1999,9(3):624-626.
    [11]路贵民,刘学山.冰晶石熔体中Al热还原法制备Al-Sc合金[J].中国有色金属学报,1999,9(1):171-174.Lu G M,Liu X S.Preparation of Al-Sc master alloy by aluminothermy in n Na F·Al F3molten salt[J].The Chinese Journal of Nonferrous Metals,1999,9(1):171-174.
    [12]刘翘楚,薛济来,朱骏.钾冰晶石-氧化钪体系中铝热还原反应过程的研究[J].有色金属(冶炼部分),2013,(3):24-27.Liu Q C,Xue J L,Zhu J.Study on aluminum thermoreduction in K3Al F6-Sc2O3system[J].Nonferrous Metals(Extractive Metallurgy),2013,(3):24-27.
    [13]陈宇昕.氟化物体系电解稀土氧化物制备稀土金属研究[J].稀土,2015,35(2):99-107.Chen Y X.Research progress of preparation of rare earth metals by electrolysis in fluoride salt system[J].Chinese Rare Earths,2015,35(2):99-107.
    [14]梁英教,车萌昌.无机物热力学手册[M].沈阳:东北大学出版社,1993.43-328.Liang Y J,Che M C.Thermeodynamic Handbook of Inorganic Substances[M].Shenyang:Northeastern University Press,1993.43-328.
    [15]Shevchenko M O,Kudin G V,Berezutskii V V,et al.Thermodynamic properties of Al-Sc alloys[J].Powder Metallurgy and Metal Ceramics,2014,53(3-4):243-249.
    [16]Ratner A H,Geilikman M B,Aleksandrovski S V,et al.Thermodynamic calculation on metallic thermoreduction during preparation of aluminium-rare master alloys[J].Trans Nonferrous Met Soc China,2001,11(1):18-21.
    [17]Cacciamani G,Riani P,Borzone G,et al.Thermodynamic measurements and assessment of the Al-Sc system[J].Intermetallics,1999,7(7):101-108.
    [18]Kang Youn-Bae,Pelton A D,Chartrand P,et al.Critical evaluation and thermodynamic optimization of the AlCe,Al-Y,Al-Sc,and Mg-Sc binary systems[J].Computer Coupling of Phase Diagrams and Thermochemistry,2008,32(2):413-422.
    [19]张家芸,邢献然,宋波,等.冶金物理化学[M].北京:冶金工业出版社,2004.20-21.Zhang J Y,Xing X R,Song B,et al.Physical Chemistry of Metallurgy[M].Beijing:Metallurgical Industry Press,2004.20-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700