用户名: 密码: 验证码:
Si-LiH(LiBH_4)复合物的水解制氢性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Hydrogen-generation Properties of Si-LiH(LiBH_4) Composites
  • 作者:王瑜彬 ; 刘海镇 ; 徐丽 ; 王新华 ; 李寿权 ; 葛红卫 ; 严密
  • 英文作者:WANG Yubin;LIU Haizhen;XU Li;WANG Xinhua;LI Shouquan;GE Hongwei;YAN Mi;State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University;State Key Laboratory of Advanced Transmission Technology, Global Energy Interconnection Research Institute;
  • 关键词:水解制氢性能 ; ; 球磨 ; 添加剂
  • 英文关键词:hydrogen generation properties;;silicon;;ball milling;;additives
  • 中文刊名:CLKX
  • 英文刊名:Journal of Materials Science and Engineering
  • 机构:浙江大学材料科学与工程学院;全球能源互联网研究院先进输电技术国家重点实验室;
  • 出版日期:2019-04-20
  • 出版单位:材料科学与工程学报
  • 年:2019
  • 期:v.37;No.178
  • 基金:国家自然科学基金资助项目(51771171,51471149)
  • 语种:中文;
  • 页:CLKX201902001
  • 页数:6
  • CN:02
  • ISSN:33-1307/T
  • 分类号:7-11+28
摘要
作为低成本高容量水解制氢材料,Si材料受到广泛关注,但由于产氢量少和速度慢,使其应用受限。为改进Si的产氢性能,采用球磨方法制备了Si-LiH(LiBH_4)复合物,并在此基础上添加NiCl_2制备了三元复合物,研究了复合物的水解制氢特性。实验结果表明,在硅中添加LiH或LiBH_4可以提高复合物水解制氢的产量和初始放氢速率。在室温下水解1h,二元Si-10%molLiH复合物产氢量约为37mL/g,Si-10%molLiBH_4水解产氢容量为126mL/g,三元的Si-10%molLiH-3%mol NiCl_2复合物水解产氢容量为119mL/g,是硅单独水解产氢量的12倍。
        Much attentions have been attracted to silicon as a new kind of hydrolysis material to produce hydrogen with water due to its advantages of high hydrogen generation capacity, low price and rich resources. However, the hydrolysis properties of silicon with water are poor because of the slow and low hydrogen productivity. In order to improve the activity of silicon, the Si-LiH(LiBH_4) composites were prepared by ball milling, and NiCl_2 was added to the composites to form ternary composites. The hydrogen-generation properties of these composites were systematically studied. Results show that the addition of LiH(LiBH_4) is beneficial to the improvement of the hydrolysis properties of silicon. Under ambient conditions for 1 h hydrolysis, the hydrogen generation capacity of Si-10 mol%LiH and Si-10 mol%LiBH_4 binary composites are about 37 mL/g and 126 mL/g, respectively. That of Si-10 mol%LiH-3 mol%NiCl_2 ternary composite reaches around 119 mL/g, which is 12 times higher than the hydrolysis of silicon alone.
引文
[1] Tachibana Y.,Vayssieres L.,Durrant J.Artificial Photosynthesis for Solar Water-splitting[J].Nature Photonics,2012,6(8):511~518.
    [2] Weigele P.,Noren C.J.Photocatalysts Splitting Water with Viruses[J].Nature Nanotechnology,2010,5(5):313~314.
    [3] Cobo S.,Heidkamp J.,Jacques P.A.,et al.A Janus Cobalt-based Catalytic Material for Electro-splitting of Water[J].Nature Materials,2012,11(9):802~807.
    [4] Wang X.C.,Maeda K.,Thomas A.,et al.A metal-free Polymeric Photocatalyst for Hydrogen Production from Water under Visible Light[J].Nature Materials,2009,8(1):76~80.
    [5] 周素芹,程晓春,居学海,等.储氢材料研究进展[J].材料科学与工程学报,2010,28(5):783~790.
    [6] 刘清涛,王桂赟,等.NiO/Ba2CaWO6的合成及其光催化分解水性能[J].材料科学与工程学报,2009,27(1):65~68.
    [7] 任娟,刘其军,张红.多孔储氢材料研究现状评述[J].材料科学与工程学报,2017,35(1):160~165.
    [8] 陈君儿,熊智涛,等.配位氢化物储氢材料Mg(BH4)2的研究进展[J].材料科学与工程学报,2011,29(4):639~646.
    [9] 张琰,王新华,等.用于超高压化学热压缩的稀土储氢合金研究[J].材料科学与工程学报,2006,24(1):97~100.
    [10] 赵伟刚,罗路,王洪艳.高比表面积活性炭吸附储氢材料的研究进展[J].材料科学与工程学报,2016,34(5):848~853.
    [11] 刘宾虹,朱和鹏,潘伟源,等.金属硼化物对LiBH4的去稳定化作用[J].材料科学与工程学报.2015,33(3):313~318.
    [12] 陈田,刘海镇,李寿权,等.Nb基添加剂对AlH3放氢行为的影响[J].材料科学与工程学报,2017,35(1):9~13.
    [13] Maeda K.,Teramura K.,Lu D.L.,et al.Photocatalyst Releasing Hydrogen from Water-Enhancing Catalytic Performance Holds Promise for Hydrogen Production by Water Splitting in Sunlight[J].Nature,2006,440(7082):295~295.
    [14] Zou Z.G.,Ye J.H.,Sayama K.,et al.Direct Splitting of Water under Visible Light Irradiation with an Oxide Semiconductor Photocatalyst[J].Nature,2001,414(6864):625~627.
    [15] Khan S.U.M.,Al-Shahry M.,Ingler W.B..Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2[J].Science,2002,297(5590):2243~2245.
    [16] Schlapbach,L.,Zuttel A..Hydrogen-storage Materials for Mobile Applications[J].Nature,2001,414(6861):353~358.
    [17] Khaselev O.,Turner J.A..A Monolithic Photovoltaic-photoelectrochemical Device for Hydrogen Production via Water Splitting[J].Science,1998,280(5362):425~427.
    [18] 徐斐,何定兵,胥义.绿藻光合生物制氢技术进展[J].工业微生物,2007,37(4):60~64.
    [19] Hu H.,Qiao M.,Pei Y.,et al.Kinetics of Hydrogen Evolution in Alkali Leaching of Rapidly Quenched Ni-Al Alloy[J].Applied Catalysis A:General,2003,252(1):173~183.
    [20] Soler L.,Macanás J.,et al.Aluminum and Aluminum Alloys as Sources of Hydrogen for Fuel Cell Applications[J].Journal of Power Sources,2007,169(1):144~149.
    [21] Soler L.,Macanas J.,Munoz M.,et al.Synergistic Hydrogen Generation from Aluminum,Aluminum Alloys and Sodium Borohydride in Aqueous Solutions[J].International Journal of Hydrogen Energy,2007,32(18):4702~4710.
    [22] Martínez,S.S.,Albaňil Sánchez L.,álvarez Gallegos A.A.,et al.Coupling a PEM Fuel Cell and the Hydrogen Generation from Aluminum Waste Cans[J].International Journal of Hydrogen Energy,2007,32(15):3159~3162.
    [23] Fan M.Q.,Xu F.,Sun L.X..Studies on Hydrogen Generation Characteristics of Hydrolysis of the Ball Milling Al-based Materials in Pure Water[J].International Journal of Hydrogen Energy,2007,32(14):2809~2815.
    [24] Wang H.Z.,Leung D.Y.C.,et al.A Review on Hydrogen Production Using Aluminum and Aluminum Alloys[J].Renewable and Sustainable Energy Reviews,2009,13(4):845~853.
    [25] Mahmoodi K.,Alinejad B..Enhancement of Hydrogen Generation Rate in Reaction of Aluminum with Water[J].International Journal of Hydrogen Energy,2010,35(11):5227~5232.
    [26] Czech E.,et al.Hydrogen Generation Through Massive Corrosion of Deformed Aluminum in Water[J].International Journal of Hydrogen Energy,2010,35(3):1029~1037.
    [27] Li F.,Li Q.,Kim H..CoB/open-CNTs Catalysts for Hydrogen Generation from Alkaline NaBH4 Solution[J].Chemical Engineering Journal,2012,210:316~324.
    [28] Liu Y.G.,Wang X.H.,et al.Investigation on the Improved Hydrolysis of Aluminum-calcium Hydride-salt Mixture Elaborated by Ball Milling[J].Energy,2015,84:714~721.
    [29] Litvinenko S.,Alekseev S.,Lysenko V.,et al.Hydrogen Production from Nano-porous Si Powder Formed by Stain Etching[J].International Journal of Hydrogen Energy,2010,35(13):6773~6778.
    [30] Goller B.,Kovalev D.,Sreseli O..Nanosilicon in Water as a Source of Hydrogen:Size and pH Matter[J].Nanotechnology,2011,22(30).
    [31] Bahruji H.,Bowker M.,Davies P.R..Photoactivated Reaction of Water with Silicon Nanoparticles[J].International Journal of Hydrogen Energy,2009,34(20):8504~8510.
    [32] Kale P.,Gangal A.C.,Edla R.,et al.Investigation of Hydrogen Storage Behavior of Silicon Nanoparticles[J].International Journal of Hydrogen Energy,2012,37(4):3741~3747.
    [33] Zhan C.Y.,Chu P.K.,Ren D.,et al.Release of Hydrogen During Transformation from Porous Silicon to Silicon Oxide at Normal Temperature[J].International Journal of Hydrogen Energy,2011,36(7):4513~4517.
    [34] Erogbogbo F.,Lin T.,Tucciarone P.M.,et al.On-Demand Hydrogen Generation using Nanosilicon:Splitting Water without Light,Heat,or Electricity[J].Nano Letters,2013,13(2):451~456.
    [35] Reece S.Y.,Hamel J.A.,Sung K.,et al.Wireless Solar Water Splitting Using Silicon-Based Semiconductors and Earth-Abundant Catalysts[J].Science,2011,334(6056):645~648.
    [36] Xu L.,Ashraf S.,Hu J.P.,et al.Ball-milled Si Powder for the Production of H2 from Water for Fuel Cell Applications[J].International Journal of Hydrogen Energy,2016,41(30):12730~12737.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700