用户名: 密码: 验证码:
WO_3/BiVO_4薄膜光电极构建及光电转化性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Construction and Photoelectric Conversion Properties of WO_3/BiVO_4 Composite Film Photoelectrode
  • 作者:张源 ; 卢伟伟
  • 英文作者:ZHANG Yuan;LU Weiwei;Chemical Engineering & Pharmaceutics School,Henan University of Science &Technology;
  • 关键词:聚合物辅助沉积 ; 金属有机物分解 ; WO_3/BiVO_4异质结薄膜 ; 光电转化性能
  • 英文关键词:polymer assisted deposition;;metal organic decomposition;;WO_3/BiVO_4 heterojunction film;;photoelectric conversion properties
  • 中文刊名:LYGX
  • 英文刊名:Journal of Henan University of Science and Technology(Natural Science)
  • 机构:河南科技大学化工与制药学院;
  • 出版日期:2019-04-18 09:40
  • 出版单位:河南科技大学学报(自然科学版)
  • 年:2019
  • 期:v.40;No.179
  • 基金:国家自然科学基金项目(21673067);; 河南科技大学青年学术带头人基金项目(13490001)
  • 语种:中文;
  • 页:LYGX201904017
  • 页数:7
  • CN:04
  • ISSN:41-1362/N
  • 分类号:10+104-109
摘要
分别用聚合物辅助沉积法和金属有机物分解法制备了WO_3和BiVO_4半导体薄膜电极。利用固体紫外-可见漫反射光谱、电化学阻抗和线性扫描伏安法,对WO_3和BiVO_4半导体薄膜电极的能带结构进行了表征。制备了WO_3/BiVO_4异质结复合光电极,并通过扫描电子显微镜、X射线衍射和X射线光电子能谱,对该复合光电极的断面形貌、晶型结构和物质组成进行了分析。最后,对WO_3/BiVO_4复合光电极的光电转化性能进行了研究。研究结果表明:均为单斜晶型的WO_3和BiVO_4之间形成了膜厚约为450 nm的II型异质结;在施加相对于可逆氢电极1.23 V的电势时,WO_3/BiVO_4光电极的光电流密度可以达到1.926 m A/cm~2,表现出了良好的光电转化性能。
        WO_3 and BiVO_4 semiconductor films eletrodes were prepared by polymer-assisted deposition method and metal-organic decomposition method,respectively. The band structures of WO_3 and BiVO_4 semiconductor films eletrode were characterized by solid-state UV-vis diffuse reflectance spectroscopy,electrochemical impedance spectroscopy and linear sweep voltammetry. The WO_3/BiVO_4 heterojunction composite photoelectrodes were prepared,and their cross-section morphology,crystal structure and elemental composition were analyzed by scanning electron microscopy,X-ray diffraction and X-ray photoelectron spectroscopy,respectively. The photoelectric conversion performance of WO_3/BiVO_4 composite photoelectrode was also studied. The results show that between the monoclinic WO_3 and BiVO_4,type Ⅱ heterojunction is formed with the film thickness about 450 nm. At the applied potential of 1. 23 V versus the reversible hydrogen electrode,the photocurrent density of WO_3/BiVO_4 composite photoelectrode is 1. 926 mA/cm~2,which reveals better photoelectric conversion performance.
引文
[1]CHU S,CUI Y,LIU N.The path towards sustainable energy[J].Nature materials,2017,16(1):16-22.
    [2]LEWIS N S.Research opportunities to advance solar energy utilization[J].Science,2016,351(6271):aad1920.
    [3]潘臖怡,周涵.半导体光催化全分解水的最新研究进展[J].材料导报,2013,27(15):19-24.
    [4]OSTERLOH F E.Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting[J].Chemical society reviews,2013,42(6):2294-2320.
    [5]MONIZ S J A,SHEVLIN S A,MARTIN D J,et al.Visible-light driven heterojunction photocatalysts for water splitting-a critical review[J].Energy&environmental science,2015,8(3):731-759.
    [6]MEDA L,TOZZOLA G,TACCA A,et al.Photo-electrochemical properties of nanostructured WO3prepared with different organic dispersing agents[J].Solar energy materials and solar cells,2010,94(5):788-796.
    [7]SU J Z,FENG X J,SLOPPY J D,et al.Vertically aligned WO3nanowire arrays grown directly on transparent conducting oxide coated glass:synthesis and photoelectrochemical properties[J].Nano letters,2011,11(1):203-208.
    [8]JIAN J,JIANG G,VAN DE KROL R,et al.Recent advances in rational engineering of multinary semiconductors for photoelectrochemical hydrogen generation[J].Nano energy,2018,51:457-480.
    [9]DONG P Y,HOU G H,XI X U,et al.WO3-based photocatalysts:morphology control,activity enhancement and multifunctional applications[J].Environmental science-nano,2017,4(3):539-557.
    [10]YANG J H,WANG D G,HAN H X,et al.Roles of cocatalysts in photocatalysis and photoelectrocatalysis[J].Accounts of chemical research,2013,46(8):1900-1909.
    [11]崔贝磊,卢伟伟,张军.新型Ta3N5半导体薄膜电极的制备及其光电转化性能[J].河南科技大学学报(自然科学版),2018,39(4):94-98,104.
    [12]戈磊,张宪华.微乳液法合成新型可见光催化剂Bi VO4及光催化性能研究[J].无机材料学报,2009,24(3):453-456.
    [13]KANEKO H,NISHIMOTO S,MIYAKE K,et al.Physical and electrochemichromic properties of RF sputtered tungsten oxide films[J].Journal of applied physics,1986,59(7):2526-2534.
    [14]ARDO S,MEYER G J.Photodriven heterogeneous charge transfer with transition-metal compounds anchored to Ti O2semiconductor surfaces[J].Chemical society reviews,2009,38(1):115-164.
    [15]GRIGIONI I,CORTI A,DOZZI M V,et al.Photoactivity and stability of WO3/Bi VO4photoanodes:effects of the contact electrolyte and of Ni/Fe oxyhydroxide protection[J].Journal of chysical chemistry c,2018,122(25):13969-13978.
    [16]SU J Z,GUO L J,BAO N Z,et al.Nanostructured WO3/Bi VO4heterojunction films for efficient photoelectrochemical water splitting[J].Nano letters,2011,11(5):1928-1933.
    [17]WANG G M,LING Y C,WANG H Y,et al.Hydrogen-treated WO3nanoflakes show enhanced photostability[J].Energy&environmental science,2012,5(3):6180-6187.
    [18]ZENG Q Y,LI J H,LI L S,et al.Synthesis of WO3/Bi VO4photoanode using a reaction of bismuth nitrate with peroxovanadate on WO3film for efficient photoelectrocatalytic water splitting and organic pollutant degradation[J].Applied catalysis b(environmental),2017,217:21-29.
    [19]JIN B,JUNG E,MA M,et al.Solution-processed yolk-shell-shaped WO3/Bi VO4heterojunction photoelectrodes for efficient solar water splitting[J].Journal of materials chemistry a,2018,6(6):2585-2592.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700