用户名: 密码: 验证码:
污水管道危害性气体浓度分布模型扩展与验证
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Extension and validation of the model of hazard gas concentration distribution in sewer
  • 作者:闫森 ; 丁艳萍 ; 郑才林 ; 廖邦友 ; 宋光顺 ; 陈军 ; 卢金锁
  • 英文作者:YAN Sen;DING Yanping;ZHENG Cailin;LIAO Bangyou;SONG Guangshun;CHEN Jun;LU Jinsuo;Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architectureand Technology;School of Business and Management, Xi'an University of Architecture and Technology;Ankang Municipal Facilities Management Office;Xi'an Municipal Engineering Design & Research Institute Co.Ltd.;
  • 关键词:污水管道 ; 一氧化碳 ; 预测模型 ; 水力参数
  • 英文关键词:sewer;;carbon monoxide;;model prediction;;hydraulic parameters
  • 中文刊名:HJJZ
  • 英文刊名:Chinese Journal of Environmental Engineering
  • 机构:西安建筑科技大学西北水资源与环境生态教育部重点实验室;西安建筑科技大学管理学院;安康市市政设施管理处;西安市政设计研究院有限公司;
  • 出版日期:2019-05-05 14:26
  • 出版单位:环境工程学报
  • 年:2019
  • 期:v.13
  • 基金:国家自然科学基金资助项目(51778523)
  • 语种:中文;
  • 页:HJJZ201905027
  • 页数:9
  • CN:05
  • ISSN:11-5591/X
  • 分类号:226-234
摘要
污水管道危害气体分布模型的建立对管道的维护管理具有重要意义。以SewerX模型为基础,将硫酸盐还原作为产生CO的主要生化过程,并入污水管道总生化反应体系,扩展SewerX模型,建立了污水管道内CO、H_2S、CH_4的浓度分布应用模型。将其应用到某市长度为4 100 m污水管道,管道危害气体浓度模拟结果与实测结果比对发现,浓度变化趋势一致,相关系数达到0.99以上,表明扩展模型具有实际应用价值。在一定设计流量下,可选择不同污水管道水力参数,应用扩展模型分析表明,合理选择参数可降低污水管道危害气体浓度。研究为污水管道内危害性气体浓度的预测提供参考。
        The model of hazardous gas concentration distribution in sewer plays an important role in sewer maintenance. Based on SewerX model, sulfate reduction was selected as the main biochemical process of CO production and incorporated into the total biochemical reaction system in sewer. Then the SewerX model was extended and the model capable of predicting H_2 S, CH_4 and CO concentration along sewer was built. The model was calibrated and validated based on a series of sewers(4 100 m total) in a city in China. It was found that the simulation results for the hazardous gas concentration presented the same trend with the measured results, and their correlation coefficient was over 0.99, which indicated that the developed model has practical application value. At a certain design flow rate, hydraulic parameters of sewer could be selected. The application of the extended model indicated that the hazardous gas concentration in sewer could be reduced when reasonable hydraulic parameters was selected. The study provides a reference for predicting the hazardous gas concentration in sewer.
引文
[1]方德琼.山地城市污水管道中有害气体的检测及分布规律研究[D].重庆:重庆大学, 2012.
    [2] PIKAAR I, SHARMA K R, HU S, et al. Reducing sewer corrosion through integrated urban water management[J]. Science,2014, 345(6198):812-814.
    [3] OJHA V K, DUTTA P, CHAUDHURI A. Identifying hazardousness of sewer pipeline gas mixture using classification methods:A comparative study[J]. Neural Computing&Applications, 2016, 28(6):1-12.
    [4] JIANG G, KELLER J, BOND P L. Determining the long-term effects of H2S concentration, relative humidity and air temperature on concrete sewer corrosion[J]. Water Research, 2014, 65:157-169.
    [5] GUISASOLA A, HAAS D D, KELLER J, et al. Methane formation in sewer systems[J]. Water Research, 2008, 42(6/7):1421-1430.
    [6]张远,吕淑然,杨凯,等.城市污水管道甲烷爆炸防控对策研究现状及展望[J].安全与环境工程, 2015, 22(5):134-138.
    [7] NIELSEN A H, VOLLERTSEN J, JENSEN H S, et al. Aerobic and anaerobic transformations of sulfide in a sewer system:Field study and model simulations[J]. Water Environment Research, 2008, 80(1):16-25.
    [8]李怀正,张璐璇,汤霞,等.城市排水管道中硫化氢产气原因及影响因素分析[J].环境科学与管理, 2012, 37(4):95-97.
    [9] CHAOSAKUL T, KOOTTATEP T, POLPRASERT C. A model for methane production in sewers[J]. Environmental Letters,2014, 49(11):1316-1321.
    [10] GUISASOLA A, SHARMA K R, KELLER J, et al. Development of a model for assessing methane formation in rising main sewers[J]. Water Research, 2009, 43(11):2874-2884.
    [11] HVITVEDJACOBSEN T, VOLLERTSEN J, NIELSEN A H, et al. Sewer Processes:Microbial and Chemical Process Engineering of Sewer Networks[M]. USA:CRC Press, 2013.
    [12] MOHAMMAD K, EHSAN D. Optimal design of wastewater collection networks based on production rate of hydrogen sulfide[J]. Life Science Journal, 2015, 12(8):73-77.
    [13] SHARMA K R, YUAN Z, DE H D, et al. Dynamics and dynamic modelling of H2S production in sewer systems[J]. Water Research, 2008, 42(10/11):2527-2538.
    [14] FOLEY J, YUAN Z, LANT P. Dissolved methane in rising main sewer systems:Field measurements and simple model development for estimating greenhouse gas emissions[J]. Water Science&Technology, 2009, 60(11):2963-2971.
    [15] LIU Y, NI B, SHARMA K, et al. Methane emission from sewers[J]. Science of the Total Environment, 2015, 524-525:40-51.
    [16] FIRER D, FRIEDLER E, LAHAV O. Control of sulfide in sewer systems by dosage of iron salts:Comparison between theoretical and experimental results, and practical implications[J]. Science of the Total Environment, 2008, 392(1):145-156.
    [17] NIELSEN A H, HVITVEDJACOBSEN T, VOLLERTSEN J. Kinetics and stoichiometry of sulfide oxidation by sewer biofilms[J]. Water Research, 2005, 39(17):4119-4125.
    [18] CALABRòP S, MANNINA G, VIVIANI G. In sewer processes:Mathematical model development and sensitivity analysis[J].Water Science&Technology, 2009, 60(1):107-115.
    [19] DONCKELS B M R, KROLL S, VAN DORPE M, et al. Global sensitivity analysis of an in-sewer process model for the study of sulfide-induced corrosion of concrete[J]. Water Science&Technology, 2014, 69(3):647-655.
    [20] VOLLERTSEN J, HVITVEDJACOBSEN T. Stoichiometric and kinetic model parameters for microbial transformations of suspended solids in combined sewer systems[J]. Water Research, 1999, 33(14):3127-3141.
    [21] VOLLERTSEN J, REVILLA N, HVITVEDJACOBSEN T, et al. Modeling sulfides, pH and hydrogen sulfide gas in the sewers of San Francisco[J]. Water Environment Research, 2015, 87(11):1980-1989.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700