用户名: 密码: 验证码:
中间再沸式热泵反应精馏生产乙酸异丁酯的设计与控制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Design and Control of Isobutyl Acetate Synthesis by Inter-Reboiler Heat Pump Reactive Distillation
  • 作者:张青瑞 ; 李海英 ; 闫森 ; 刘艳
  • 英文作者:ZHANG Qingrui;LI Haiying;YAN Sen;LIU Yan;College of Chemical Engineering, Qingdao University of Science and Technology;
  • 关键词:乙酸异丁酯 ; 中间再沸式热泵反应精馏 ; 稳态优化 ; 动态控制
  • 英文关键词:isobutyl acetate;;inter-reboiler heat pump reactive distillation;;steady-state optimization;;dynamic control
  • 中文刊名:SXJG
  • 英文刊名:Acta Petrolei Sinica(Petroleum Processing Section)
  • 机构:青岛科技大学化工学院;
  • 出版日期:2019-05-25
  • 出版单位:石油学报(石油加工)
  • 年:2019
  • 期:v.35
  • 基金:山东省自然科学基金项目(ZR2013BM001)资助
  • 语种:中文;
  • 页:SXJG201903014
  • 页数:9
  • CN:03
  • ISSN:11-2129/TE
  • 分类号:91-99
摘要
基于传统反应精馏(CRD)合成乙酸异丁酯(IBAC)塔顶塔底温差较大的特点,提出中间再沸式热泵反应精馏(IR-HPRD-1)以及带预热器的中间再沸式热泵反应精馏(IR-HPRD-2)流程。采用Aspen软件对其进行优化,得到最优工艺操作参数。在稳态模拟基础上,采用奇异值分解法(SVD)找出温度灵敏板,对IR-HPRD-2流程设计了可行的控制方案。结果表明:与CRD工艺相比,IR-HPRD-1和IR-HPRD-2的年总能耗(TUC)分别降低44.33%和47.55%,年总费用(TAC)分别降低16.92%和19.13%,IR-HPRD-2在节能与降低TAC方面更优于IR-HPRD-1;在±20%进料流率与5%进料组分扰动下,该可行性控制方案能在短时间内有效控制产品质量。
        Often there is a large temperature difference between the top and bottom of the conventional reactive distillation(CRD) for the isobutyl acetate synthesis. Based on this characteristic, we proposed two processes, the inter-reboiler mechanical vapor recompression heat pump reactive distillation without(IR-HPRD-1) and with preheater(IR-HPRD-2). The parameters of those two processes were subsequently optimized by employing Aspen software. Later, the singular value decomposition(SVD) method was used to find the temperature sensitive stages, and a feasible control scheme was designed for the IR-HPRD-2 process. The results show that compared with the conventional CRD process, the TUC of IR-HPRD-1 and IR-HPRD-2 decrease by 44.33% and 47.55%, respectively, and TAC decrease by 16.92% and 19.13%, respectively. Moreover, IR-HPRD-2 shows better performance than IR-HPRD-1 on the energy saving and reducing. Overall, the control scheme can effectively control the quality of the product in a short time under the disturbance of the ±20% feed flow rate and the 5% feed component.
引文
[1] IZCI A,UYAR E,IZCII E.Determination of adsorption and kinetic parameters for synthesis of isobutyl acetate catalyzed by AMBERLITE IR-122[J].Chem Eng Commun,2008,196(1/2):56-67.
    [2] SUO X,YE Q,LI R,et al.Investigation about energy saving for synthesis of isobutyl acetate in the reactive dividing-wall column[J].Ind Eng Chem Res,2017,56(19):5607-5617.
    [3] BEHBAHANI F K,FARAHANI M,OSKOOIE H A.Iron(Ⅲ) phosphate as a green and reusable catalyst promoted chemo selective acetylation of alcohols and phenols with acetic anhydride under solvent free conditions at room temperature[J].Chem Inform,2011,31(3):633-637.
    [4] FELBAB N,PATELl B,EL-HALWAGI M M,et al.Vapor recompression for efficient distillation 1.A new synthesis perspective on standard configurations[J].AICHE Journal,2013,59(8):2977-2992.
    [5] 李沐荣,许良华,辛春伟,等.热泵精馏隔壁塔分离宽沸程物系的模拟[J].化工学报,2017,68(5):1906-1912.(LI Murong,XU Lianghua,XIN Chunwei,et al.Simulation of separation for wide boiling system by heat pump distillation wall column[J].J Chem Ind Eng (China),2017,68(5):1906-1912.)
    [6] 丁良辉,陈俊明,李乾军,等.基于中间再沸器的氯化苄热泵精馏工艺模拟[J].化学工程,2016,44(1):23-27.(DING Lianghui,CHEN Junming,LI Qianjun,et al.Simulation of heat pump distillation based on intermediate reboiler for separating benzyl chloride[J].Chem Eng,2016,44(1):23-27.)
    [7] DIEZ E,RODRIGUEZ A,GOMEZ J M,et al.Distillation assisted heat pump in a trichlorosilane purification process[J].Chem Eng Process,2013,69(7):70-76.
    [8] ALCANTARA-AVIL J R,GOMEZ-CASTRO F I,SEGOVIA-HERNANDEZ J G,et al.Optimal design of cryogenic distillation columns with side heat pumps for the propylene/propane separation[J].Chem Eng Process,2014,82(8):112-122.
    [9] 丁良辉,刘从容,李乾军,等.外部反应精馏强化的环氧乙烷制乙二醇工艺模拟及其热泵节能研究[J].石油学报(石油加工),2017,33(3):563-570.(DING Lianghui,LIU Congrong,LI Qianjun,et al.Study on the simulation and heat pump energy saving of distillation with external reactive for the ethylene glycol synthesis[J].Acta Petrolei Sinica (Petroleum Processing Section),2017,33(3):563-570.)
    [10] 李洪,孟莹,李鑫钢,等.乙酸戊酯酯化反应精馏过程系统控制模拟及分析[J].化工进展,2015,34(12):4165-4171.(LI Hong,MENG Ying,LI Xin’gang,et al.Dynamic simulation and analysis of reactive distillation column for production of amyl acetate[J].Chem Ind Eng Prog,2015,34(12):4165-4171.)
    [11] XU H,YE Q,ZHANG H,et al.Design and control of reactive distillation-recovery distillation flowsheet with a decanter for synthesis of N-propyl propionate[J].Chem Eng Process,2014,85:38-47.
    [12] GAO X,WANG F,LI H,et al.Heat-integrated reactive distillation process for TAME synthesis[J].Sep Purif Technol,2014,132:468-478.
    [13] ZHU Z,LIU X,CAO Y,et al.Controllability of separate heat pump distillation for separating isopropanol-chlorobenzene mixture[J].Korean J Chem Eng,2016,34(3):1-10.
    [14] CRISTIAN P,CAO M A.Characterization and control of the distillation column with heat pump[C]//Ploiesti:International Conference on Electronics,Computers and Artificial Intelligence.IEEE,2017:1-8.
    [15] 陈正升.反应精馏合成醋酸异丁酯工艺研究[D].福州:福州大学,2014.
    [16] 李凤.乙酸正丁酯反应精馏生产工艺的模拟与研究[D].上海:华东理工大学,2013.
    [17] DOUGLAS J M.Conceptual Design of Chemical Processes[M].New York:McGraw-Hill,1988:309.
    [18] LUYBEN W L.Distillation Design and Control Using Aspen Simulation[M].New York:John Wiley & Sons,2013:360.
    [19] AND D B K,LUYBEN W L.Comparison of two types of two-temperature control structures for reactive distillation columns[J].Ind Eng Chem Res,2005,44(13):4625-4640.
    [20] HAO L,LUYBEN W L.Temperature control of the BTX divided-wall column[J].Ind Eng Chem Res,2010,49(1):189-203.
    [21] LUYBEN W L,CHIEN I L.Design and Control of Distillation Systems for Separating Azeotropess[M].New York:John Wiley & Sons,2010:473.Design and Control of Isobutyl Acetate Synthesis by Inter-Reboiler Heat Pump Reactive DistillationZHANG Qingrui LI Haiying YAN Sen LIU YanThe IR-HPRD-2 process reduces the energy consumption and TAC significantly.Compared with the CRD process,the results show that the TUC of IR-HPRD-2 decreases by 47.55% and TAC decreases by 19.13%.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700