用户名: 密码: 验证码:
弹塑性应力作用下X80管线钢的菌致开裂行为
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Bacteria Assisted Cracking of X80 Pipeline Steel under the Actions of Elastic and Plastic Stresses
  • 作者:吴堂清 ; 周昭芬 ; 王鑫铭 ; 张德闯 ; 闫茂成 ; 许进 ; 孙成 ; 尹付成
  • 英文作者:WU Tang-qing;ZHOU Zhao-fen;WANG Xin-ming;ZHANG De-chuang;YAN Mao-cheng;XU Jin;SUN Cheng;YIN Fu-cheng;Key Laboratory of Materials Design and Preparation Technology of Hunan Province,School of Materials Science and Engineering,Xiangtan University;Environmental Corrosion Center,Institute of Metal Research,Chinese Academy of Sciences;
  • 关键词:管线钢 ; 硫酸盐还原菌 ; 微生物腐蚀 ; 应力腐蚀
  • 英文关键词:pipeline steel;;sulfate-reducing bacteria;;microbiologically induced corrosion;;stress corrosion
  • 中文刊名:BMJS
  • 英文刊名:Surface Technology
  • 机构:湘潭大学材料科学与工程学院材料设计及制备技术湖南省重点实验室;中国科学院金属研究所材料环境腐蚀研究中心;
  • 出版日期:2019-07-20
  • 出版单位:表面技术
  • 年:2019
  • 期:v.48
  • 基金:国家自然科学基金项目(51601164,51871228);; 湖南省自然科学基金(2019JJ30023);; 中国博士后科学基金(2018T110836,2017M622594)~~
  • 语种:中文;
  • 页:BMJS201907034
  • 页数:11
  • CN:07
  • ISSN:50-1083/TG
  • 分类号:299-309
摘要
目的揭示硫酸盐还原菌(SRB)在管线钢表面裂纹萌生中的作用。方法 采用恒载荷实验装置施加弹性和塑性应力,通过XPS和EDS分析产物成分,利用SEM观察微生物膜形态、管线钢腐蚀形貌,研究弹性和塑性应力作用下管线钢的微生物致裂裂纹萌生和扩展行为。结果弹性和塑性应力对SRB生长无明显影响。不管是在弹性应力还是塑性应力作用下,SRB生理活动均改变了腐蚀产物的结构,增加了腐蚀产物的硫含量,提高了管线钢局部腐蚀敏感性。与弹性应力作用相比,塑性应力和SRB协同作用对管线钢微裂纹萌生和扩展的影响更大。塑性应力作用下,灭菌和接菌环境中管线钢表面均产生了微裂纹分叉。结论弹性应力和塑性应力均促进了管线钢的微生物腐蚀过程。塑性应力作用下管线钢菌致开裂更加剧烈,裂纹扩展过程与SRB生理活动有关。
        The work aims to discover the role of SRB in crack initiation of pipeline steel. The elastic and plastic stresses were applied via a constant-load set-up. The components of corrosion products were detected by XPS and EDS. The biofilm morphologies and the corrosion morphologies of pipeline were observed by SEM to study the initiation and propagation of micro-cracks of pipeline steel under elastic and plastic stresses. Elastic and plastic stresses had no significant effect on SRB growth. Regardless of the actions under elastic stress or plastic stress, the SRB physiological activities changed the structure and increased the sulfur content of corrosion products and enhanced the local corrosion sensitivity of the steel. The synergistic effect of plastic stress and SRB, had greater influence on the initiation and propagation of micro-cracks in the steel compared with that of elastic stress and SRB. Under the action of plastic stress, micro-cracks bifurcated on the pipeline steel in both the sterilization and SRB-inoculated soil solutions. Both the elastic and plastic stresses can promote the corrosion process of the pipeline steel.The bacteria assisted cracking becomes more severe under the action of the plastic stress. The micro-crack propagation of the steel is related to the physiological activity of SRB.
引文
[1]STIPANI?EV M,ROSAS O,BASSEGUY R,et al.Electrochemical and fractographic analysis of microbiologically assisted stress corrosion cracking of carbon steel[J].Corrosion science,2014,80:60-70.
    [2]于利宝,闫茂成,王彬彬,等.酸性土壤环境中Q235钢的微生物腐蚀行为[J].中国腐蚀与防护学报,2018,38(1):10-17.YU Li-bao,YAN Mao-cheng,WANG Bin-bin,et al.Microbial corrosion of Q235 steel in acidic red soil environment[J].Journal of Chinese society for corrosion and protection,2018,38(1):10-17.
    [3]刘宏伟,刘宏芳.铁氧化菌引起的钢铁材料腐蚀研究进展[J].中国腐蚀与防护学报,2017,37(3):195-206.LIU Hong-wei,LIU Hong-fang.Research progress of corrosion of steels induced by iron oxidizing bacteria[J].Journal of Chinese society for corrosion and protection2017,37(3):195-206.
    [4]邓三喜,闫小宇,柴柯,等.假单胞菌对聚硅氧烷树脂清漆涂层分解及防腐蚀行为的影响[J].中国腐蚀与防护学报,2018,38(4):326-332.DENG San-xi,YAN Xiao-yu,CHAI Ke,et al.Effect of Pseudomonas sp.on decomposition and anticorrosion behavior of polysiloxane varnish coating[J].Journal of Chinese society for corrosion and protection,2018,38(4):326-332.
    [5]WU T,SUN C,XU J,et al.A study on bacteria-assisted cracking of X80 pipeline steel in soil environment[J].Corrosion engineering,science and technology,2018,53(4):265-275.
    [6]ABEDI S S,ABDOLMALEKI A,ADIBI N.Failure analysis of SCC and SRB induced cracking of a transmission oil products pipeline[J].Engineering failure analysis,2007,14:250-261.
    [7]JAVAHERDASHTI R,SINGHRAMAN R K S,PANTERC,et al.Microbiologically assisted stress corrosion cracking of carbon steel in mixed and pure cultures of sulfate reducing bacteria[J].International biodeterioration&biodegradation,2006,58:27-35.
    [8]DOMZALICKI P,LUNARSKA E,BIRN J.Effect of cathodic polarization and sulfate reducing bacteria on mechanical properties of different steels in synthetic sea water[J].Materials and corrosion-werkstoffe und korrosion,2007,58(6):413-421.
    [9]SOWARDS J W,WILLIAMSON C H D,WEEKS T S,et al.The effect of Acetobacter sp.and a sulfate-reducing bacterial consortium from ethanol fuel environments on fatigue crack propagation in pipeline and storage tank steels[J].Corrosion science,2014,79:128-138.
    [10]THOMAS C J,EDYVEAN R G J,BROOK R,et al.The effects of microbially produced hydrogen sulphide on the corrosion fatigue of offshore structural steels[J].Corrosion science,1987,27(10-11):1197-1204.
    [11]SEREDNYTS'KYI Y A.Mechanism of corrosion of 40KHsteel near a crack tip in the presence of sulfate-reducing bacteria[J].Materials science,1997,33(1):29-34.
    [12]SLOBODYAN I M,BODAK V S,SEREDNYTS'KYI YA,et al.Effect of sulfate-reducing bacteria on the electrochemical conditions at a crack tip[J].Materials science,1993,29(5):507-513.
    [13]SEREDNITSKII Y A,SUPRUN V V,BODAK V S,et al.Microbiological corrosion of steel pipelines and mastic insulating coatings[J].Soviet materials science,1988,24(4):419-424.
    [14]管方,翟晓凡,段继周,等.阴极极化对硫酸盐还原菌腐蚀影响的研究进展[J].中国腐蚀与防护学报,2018,38(1):1-10.GUAN Fang,ZHAI Xiao-fan,DUAN Ji-zhou,et al.Progress on influence of cathodic polarization on sulfate-reducing bacteria induced corrosion[J].Journal of Chinese society for corrosion and protection,2018,38(1):1-10.
    [15]孙艳,吴佳佳,张盾,等.不同海域?不同腐蚀区带Q235碳钢实海挂片腐蚀产物层内微生物调查[J].中国腐蚀与防护学报,2018,38(4):333-342.SUN Yan,WU Jia-jia,ZHANG Dun,et al.Investigation of microorganisms in corrosion product scales on Q235carbon steel exposed to tidal-and full immersion zone at Qindao-and Sanya-sea waters[J].Journal of Chinese society for corrosion and protection,2018,38(4):333-342.
    [16]YUAN S,LIANG B,ZHAO Y,et al.Surface chemistry and corrosion behaviour of 304 stainless steel in simulated seawater containing inorganic sulphide and sulphate-reducing bacteria[J].Corrosion science,2013,74:353-366.
    [17]SHERAR B W A,POWER I M,KEECH P G,et al.Characterizing the effect of carbon steel exposure in sulfide containing solutions to microbially induced corrosion[J].Corrosion science,2011,53(3):955-960.
    [18]ALABBAS F M,WILLIAMSON C,BHOLA S M,et al.Influence of sulfate reducing bacterial biofilm on corrosion behavior of low-alloy,high-strength steel(API-5LX80)[J].International biodeterioration&biodegradation,2013,78:34-42.
    [19]WU T,YAN M,ZENG D,et al.Hydrogen permeation of X80 steel with superficial stress in the presence of sulfate-reducing bacteria[J].Corrosion science,2015,91:86-94.
    [20]WU T,XU J,YAN M,et al.Synergistic effect of sulfate-reducing bacteria and elastic stress on corrosion of X80 steel in soil solution[J].Corrosion science,2014,83:38-47.
    [21]WU T,XU J,SUN C,et al.Microbiological corrosion of pipeline steel under yield stress in soil environment[J].Corrosion science,2014,88:291-305.
    [22]SUN C,XU J,WANG F.Interaction of sulfate-reducing bacteria and carbon steel Q235 in biofilm[J].Industrial&engineering chemistry research,2011,50:12797-12806.
    [23]SIRIWARDANE R V,COOK J M.Interactions of SO2with sodium deposited on silica[J].Journal of colloid and interface science,1985,108(2):414-422.
    [24]PEISERT H,CHASSéT,STREUBEL P,et al.Relaxation energies in XPS and XAES of solid sulfur compounds[J].Journal of electron spectroscopy and related phenomena,1994,68:321-328.
    [25]SIRIWARDANE R V,COOK J M.Interaction of SO2with sodium deposited on Ca[J].Journal of colloid and interface science,1986,114(2):525-535.
    [26]LINDBERG B J,HAMRIN K,JOHANSSON G,et al.Molecular spectroscopy by means of ESCA II.Sulfur compounds.correlation of electron binding energy with structure[J].Physica scripta,1970,1(5-6):286-298.
    [27]LITTLEJOHN D,CHANG S G.An XPS study of nitrogen-sulfur compounds[J].Journal of electron spectroscopy and related phenomena,1995,71(1):47-50.
    [28]ICHIMURA K,SANO M.Electrical conductivity of layered transition-metal phosphorus trisulfide crystals[J].Synthetic metals,1991,45(2):203-211.
    [29]BINDER H.Investigations on nature of chemical bonds in iron-sulfur compounds using X-ray photoelectron spectroscopy[J].Zeitschrift fur naturforschung section B-Ajournal of chemical sciences,1973,28(5-6):255-262.
    [30]JIA R,TAN J L,JIN P,et al.Effects of biogenic H2S on the microbiologically influenced corrosion of C1018 carbon steel by sulfate reducing desulfovibrio vulgaris biofilm[J].Corrosion science,2018,130:1-11.
    [31]HUANG Y,ZHOU E,JIANG C,et al.Endogenous phenazine-1-carboxamide encoding gene PhzH regulated the extracellular electron transfer in biocorrosion of stainless steel by marine pseudomonas aeruginosa[J].Electrochemistry communications,2018,94:9-13.
    [32]ZHOU E,LI H,YANG C,et al.Accelerated corrosion of2304 duplex stainless steel by marine pseudomonas aeruginosa biofilm[J].International biodeterioration&biodegradation,2018,127:1-9.
    [33]LI Y,XU D,CHEN C,et al.Anaerobic microbiologically influenced corrosion mechanisms interpreted using bioenergetics and bioelectrochemistry:A review[J].Journal of materials science&technology,2018,34(10):1713-1718.
    [34]XU D,XIA J,ZHOU E,et al.Accelerated corrosion of2205 duplex stainless steel caused by marine aerobic pseudomonas aeruginosa biofilm[J].Bioelectrochemistry,2017,113:1-8.
    [35]CASTANEDA H,BENETTON X D.SRB-biofilm influence in active corrosion sites formed at the steel-electrolyte interface when exposed to artificial seawater conditions[J].Corrosion science,2008,50(4):1169-1183.
    [36]XU D,GU T.Carbon source starvation triggered more aggressive corrosion against carbon steel by the desulfovibrio vulgaris biofilm[J].International biodeterioration&biodegradation,2014,91:74-81.
    [37]ZHANG P,XU D,LI Y,et al.Electron mediators accelerate the microbiologically influenced corrosion of 304stainless steel by the desulfovibrio vulgaris biofilm[J].Bioelectrochemistry,2015,101:14-21.
    [38]WU T,YAN M,XU J,et al.Mechano-chemical effect of pipeline steel in microbiological corrosion[J].Corrosion science,2016,108:160-168.
    [39]GUTMAN E M.Thermodynamics of the mechanicochemical effect:I derivation of basic equations&nature of the effect[J].Soviet materials science,1967,3:264-272.
    [40]GUTMAN E M.Thermodynamics of the mechanicochemical effect:II the range of operation of nonlinear laws[J].Soviet materials science,1967,3(4):404-410.
    [41]JIA R,YANG D,XU D,et al.Electron transfer mediators accelerated the microbiologically influence corrosion against carbon steel by nitrate reducing pseudomonas aeruginosa biofilm[J].Bioelectrochemistry,2017,118:38-46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700