用户名: 密码: 验证码:
不同水温分层水库沉积物间隙水营养盐垂向分布与细菌群落结构的关系
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Relationship Between the Vertical Distribution of Nutrients and Bacterial Community Structures in Sediment Interstitial Waters of Stratified Reservoirs with Different Water Temperatures
  • 作者:王慎 ; 张思思 ; 许尤 ; 官卓宇 ; 杨正健 ; 刘德富 ; 马骏
  • 英文作者:WANG Shen;ZHANG Si-si;XU You;GUAN Zhuo-yu;YANG Zheng-jian;LIU De-fu;MA Jun;Hubei Key Laboratory of Ecological Restoration of River-lakes and Algal Utilization,School of Civil Engineering,Architecture and Environment,Hubei University of Technology;Engineering Research Center of Eco-environment in Three Gorges Reservoir Region,Ministry of Education,Three Gorges University;
  • 关键词:澜沧江 ; 分层沉积物 ; 间隙水 ; 营养盐 ; 细菌群落
  • 英文关键词:Lancang River;;stratified sediment;;interstitial water;;nutrient;;bacterial community
  • 中文刊名:HJKZ
  • 英文刊名:Environmental Science
  • 机构:湖北工业大学土木建筑与环境学院河湖生态修复与藻类利用湖北省重点实验室;三峡大学三峡库区生态环境教育部工程研究中心;
  • 出版日期:2019-01-20 17:30
  • 出版单位:环境科学
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金项目(51709096,51879099,91647207,51779128);; 国家重点研发计划项目(2016YFC0402204)
  • 语种:中文;
  • 页:HJKZ201906031
  • 页数:11
  • CN:06
  • ISSN:11-1895/X
  • 分类号:263-273
摘要
为探究不同水温分层水库沉积物间隙水营养盐垂向分布规律及其与细菌群落结构的关系,运用16S rRNA高通量测序技术,分析了2018年1月澜沧江小湾、漫湾水库建库后沉积物细菌群落结构特征,并采用Cannoco软件对细菌群落与环境因子关系进行了冗余分析.结果表明,调查期间小湾水库水体表底温差3. 3℃,最大温度梯度为0. 2℃·m~(-1)属于分层水体,漫湾表底温差0. 1℃属于混合水体.小湾间隙水NH_4~+-N和NO_3~--N平均质量浓度分别为2. 233 mg·L~(-1)和0. 030 mg·L~(-1),漫湾分别为2. 569 mg·L~(-1)和0. 016 mg·L~(-1).间隙水NH_4~+-N在两个水库沉积物中均表现垂向向下增大的趋势,而NO_3~--N垂向变化则不明显但均在深层质量浓度最底,库区间比较来看,只有NO_3~--N具有极显著性差异,其中小湾明显高于漫湾.菌群分类发现,小湾与漫湾沉积物细菌群落具有相同的优势菌门和优势菌属,水温分层对间隙水营养盐及细菌群落结构无显著影响.而漫湾相比小湾沉积物中反硝化菌相对丰度更高,硝化菌和厌氧氨氧化菌相对丰度更低,同一库区沉积物深层中反硝化菌相对丰度较高,有机物降解菌、硝化菌、厌氧氨氧化菌和溶磷菌相对丰度较低,是造成沉积物营养盐库间差异和垂向差异的原因.
        In order to study the relationship between the vertical distribution of nutrients and bacterial community structures in sediment interstitial waters of stratified reservoirs with different water temperatures,MiSeq high-throughput sequencing was used to analyze and compare the structural characteristics of sediment bacterial communities after reservoirs were built. Additionally,redundancy analysis(RDA) was used to assess the bacterial communities and environmental factors with Cannoco software. The results showed that the temperature difference between the surface and bottom layer of the Xiaowan Reservoir was 3. 3℃,and the maximum thermal gradient was 0. 2 ℃·m~(-1); thus,it was a typical stratified reservoir. The temperature difference between the surface and bottom layer of the Manwan Reservoir was 0. 1℃; thus,it was a typical mixed reservoir. The average concentrations of NH_4~+ -N and NO_3~--N in sediment interstitial waters of the Xiaowan Reservoir were 2. 233 mg·L~(-1) and 0. 030 mg·L~(-1),while those of Manwan were 2. 569 mg·L~(-1) and0. 016 mg·L~(-1),respectively. In the different reservoirs,the concentrations of NH_4~+ -N showed upward trends,and while variation of NO_3~--N was not obvious,the content of NO_3~--N reached a minimum value in the deep layer. In comparisons between reservoirs,only NO_3~--N showed a significant difference,in which Xiaowan had obviously higher concentrations than Manwan. The bacterial community structures in the Xiaowan and Manwan reservoir sediments had the same dominant bacteria at the phylum,class,and genus levels. The differences of water temperature stratification had no significant effect on nutrients and microorganisms in the sediments. Under the influence of other factors,the denitrifying bacteria in the Manwan Reservoir sediments were more abundant than those in the Xiaowan Reservoir,and the nitrifying bacteria and anammox bacteria in the Xiaowan Reservoir sediments were more abundant than those in the Manwan Reservoir. In the same reservoir,the denitrifying bacteria in the bottom of the sediments were more abundant,and the organic degradation bacteria,nitrifying bacteria,anammox bacteria,and phosphate-solubilizing bacteria were less abundant in this zone. These trends contributed to the differences of nutrients vertically in the different reservoirs.
引文
[1]纪道斌,龙良红,徐慧,等.梯级水库建设对水环境的累积影响研究进展[J].水利水电科技进展,2017,37(3):7-14.Ji D B, Long L H, Xu H, et al. Advances in study on cumulative effects of construction of cascaded reservoirs on water environment[J]. Advances in Science and Technology of Water Resources,2017,37(3):7-14.
    [2]董世魁,赵晨,刘世梁,等.水坝建设影响下澜沧江中游沉积物重金属形态分析及污染指数研究[J].环境科学学报,2016,36(2):466-474.Dong S K,Zhao C,Liu S L,et al. Speciation and pollution of heavy metals in sediment from middle Lancang-Mekong River influenced by dams[J]. Acta Scientiae Circumstantiae,2016,36(2):466-474.
    [3] Zwirglmaier K,Keiz K,Engel M,et al. Seasonal and spatial patterns of microbial diversity along a trophic gradient in the interconnected lakes of the Osterseen Lake District,Bavaria[J].Frontiers in Microbiology,2015,6:1168.
    [4]宋洪宁,杜秉海,张明岩,等.环境因素对东平湖沉积物细菌群落结构的影响[J].微生物学报,2010,50(8):1065-1071.Song H N,Du B H,Zhang M Y,et al. Effect of environmental factors on bacterial community in Lake Dongping sediment[J].Acta Microbiologica Sinica,2010,50(8):1065-1071.
    [5]朱春灵.澜沧江小湾水库水环境和氮磷营养盐的时空分异特征初步研究[D].昆明:云南大学,2013.
    [6]李晋鹏,董世魁,彭明春,等.梯级水坝运行对漫湾库区底栖动物群落结构及分布格局的影响[J].应用生态学报,2017,28(12):4101-4108.Li J P,Dong S K,Peng M C,et al. Effects of cascading hydropower dams operation on the structure and distribution pattern of benthic macroinvertebrate assemblages in Manwan Reservoir,Southwest China[J]. Chinese Journal of Applied Ecology,2017,28(12):4101-4108.
    [7]国家环境保护总局.水和废水监测分析方法[M].(第四版).北京:中国环境科学出版社,2002. 525-644.
    [8] HJ 501-2009,水质总有机碳的测定燃烧氧化-非分散红外吸收法[S].
    [9] Baraniecki C A,Aislabie J,Foght J M. Characterization of Sphingomonas sp. Ant 17,an aromatic hydrocarbon-degrading bacterium isolated from antarctic soil[J]. Microbial Ecology,2002,43(1):44-54.
    [10]李卫华,孙英杰,刘子梁,等.序批式生物反应器填埋场脱氮微生物多样性分析[J].环境科学,2016,37(1):342-349.Li W H,Sun Y J,Liu Z L,et al. Analysis on diversity of denitrifying microorganisms in sequential batch bioreactor landfill[J]. Environmental Science,2016,37(1):342-349.
    [11]张晶,孙照勇,钟小忠,等.奶牛粪条垛式模拟堆肥腐熟度及微生物群落结构变化[J].应用与环境生物学报,2016,22(3):423-429.Zhang J,Sun Z Y,Zhong X Z,et al. Maturity and microbial community structure dynamics during simulated windrow composting of solid fraction of dairy manure[J]. Chinese Journal of Applied and Environmental Biology,2016,22(3):423-429.
    [12] Zhu X B,Tian J P,Liu C,et al. Composition and dynamics of microbial community in a zeolite biofilter-membrane bioreactor treating coking wastewater[J]. Applied Microbiology and Biotechnology,2013,97(19):8767-8775.
    [13]王静,郝建安,张爱君,等.厌氧氨氧化反应研究进展[J].水处理技术,2014,40(3):1-4.
    [14]姚源,竺建荣,唐敏,等.好氧颗粒污泥技术处理乡镇污水应用[J].环境科学研究,2018,31(2):379-388.Yao Y,Zhu J R,Tang M,et al. Application of aerobic granular sludge technology on treatment of villages and towns sewage[J].Research of Environmental Sciences,2018,31(2):379-388.
    [15]韩晓阳,李智,汪强强,等.茶园土壤高活性氨化菌的筛选鉴定及特性研究[J].茶叶科学,2013,33(1):91-98.Han X Y,Li Z,Wang Q Q,et al. Research on screening and identification of ammonifying bacterium and characteristic of strains from the soils of tea garden[J]. Journal of Tea Science,2013,33(1):91-98.
    [16]王思宇,李军,王秀杰,等.添加芽孢杆菌污泥反硝化特性及菌群结构分析[J].中国环境科学,2017,37(12):4649-4656.Wang S Y,Li J,Wang X J,et al. Denitrification characteristics of Bacillus subtilis sludge and analysis of microbial community structure[J]. China Environmental Science,2017,37(12):4649-4656.
    [17]张小平.枯草芽孢杆菌SC02和施氏假单胞菌F1M对草鱼养殖水体水质的影响及机理研究[D].杭州:浙江大学,2014.
    [18] Kumar M,Ou Y L,Lin J G. Co-composting of green waste and food waste at low C/N ratio[J]. Waste Management,2010,30(4):602-609.
    [19]李辉,徐新阳,李培军,等.人工湿地中氨化细菌去除有机氮的效果[J].环境工程学报,2008,2(8):1044-1047.Li H,Xu X Y,Li P J,et al. Research on ammonibacteria removing organic nitrogen in construction wetland[J]. Chinese Journal of Environmental Engineering,2008,2(8):1044-1047.
    [20]何霞,赵彬,吕剑,等.异养硝化细菌Bacillus sp. LY脱氮性能研究[J].环境科学,2007,28(6):1404-1408.He X,Zhao B,Lv J,et al. Nitrogen removal by Bacillus sp. LY with heterotrophic nitrification ability[J]. Environmental Science,2007,28(6):1404-1408.
    [21] Ha Y M,Park Y H,Kim Y J. A taxonomic study of Bacillus sp.isolated from korean salt-fermented anchovy[J]. Molecular Biology Today,2001,3(1):25-29.
    [22]张培玉,曲洋,于德爽,等.菌株qy37的异养硝化/好氧反硝化机制比较及氨氮加速降解特性研究[J].环境科学,2010,31(8):1819-1826.Zhang P Y,Qu Y,Yu D S,et al. Comparison of heterotrophic nitrification and aerobic denitrification system by strain qy37 and its accelerating removal characteristic of NH4+-N[J].Environmental Science,2010,31(8):1819-1826.
    [23]李军冲,齐树亭,石玉新,等.一株假单胞菌降解溶解有机氮条件探讨[J].食品研究与开发,2010,31(5):151-153.Li J C,Qi S T,Shi Y X,et al. Research on conditions of degrading dissolved opganic nitrogen by a Pesudomonas[J].Food Research and Development,2010,31(5):151-153.
    [24]常玉梅,杨琦,郝春博,等.城市污水厂活性污泥强化自养反硝化菌研究[J].环境科学,2011,32(4):1210-1216.Chang Y M,Yang Q,Hao C B,et al. Experimental study of autotrophic denitrification bacteria through bioaugmentation of activated sludge from municipal wastewater plant[J].Environmental Science,2011,32(4):1210-1216.
    [25]杨浩,张国珍,杨晓妮,等. 16S rRNA高通量测序研究集雨窖水中微生物群落结构及多样性[J].环境科学,2017,38(4):1704-1716.Yang H,Zhang G Z,Yang X N,et al. Microbial community structure and diversity in cellar water by 16S rRNA highthroughput sequencing[J]. Environmental Science,2017,38(4):1704-1716.
    [26]李慧星,杜风光,薛刚.高通量测序研究酒精废水治理中厌氧活性污泥的微生物菌群[J].环境科学学报,2016,36(11):4112-4119.Li H X,Du F G,Xue G. Microbial community analysis of anaerobic activated sludge in the process of alcohol wastewater treatment using high throughput sequencing[J]. Acta Scientiae Circumstantiae,2016,36(11):4112-4119.
    [27] Foesel B U,Drake H L,Schramm A. Defluviimonas denitrificans gen. nov., sp. nov., and Pararhodobacter aggregans gen.nov.,sp. nov., non-phototrophic Rhodobacteraceae from the biofilter of a marine aquaculture[J]. Systematic and Applied Microbiology,2011,34(7):498-502.
    [28] Selvakumar G,Kundu S,Joshi P,et al. Growth promotion of wheat seedlings by Exiguobacterium acetylicum 1P(MTCC 8707)a cold tolerant bacterial strain from the Uttarakhand Himalayas[J]. Indian Journal of Microbiology,2010,50(1):50-56.
    [29] Vishnivetskaya T A, Kathariou S, Tiedje J M. The Exiguobacterium genus:Biodiversity and biogeography[J].Extremophiles,2009,13(3):541-555.
    [30] Wang P H,Leu Y L,Ismail W,et al. Anaerobic and aerobic cleavage of the steroid core ring structure by Steroidobacter denitrificans[J]. Journal of Lipid Research,2013,54(5):1493-1504.
    [31] Mao Y P, Xia Y, Zhang T. Characterization of Thaueradominated hydrogen-oxidizing autotrophic denitrifying microbial communities by using high-throughput sequencing[J].Bioresource Technology,2013,128:703-710.
    [32] Mergaert J,Cnockaert M C,Swings J. Thermomonas fusca sp.nov. and Thermomonas brevis sp. nov.,two mesophilic species isolated from a denitrification reactor with poly(ε-caprolactone)plastic granules as fixed bed,and emended description of the genus Thermomonas[J]. International Journal of Systematic and Evolutionary Microbiology,2003,53(6):1961-1966.
    [33] Ma Q, Qu Y Y, Shen W L, et al. Bacterial community compositions of coking wastewater treatment plants in steel industry revealed by Illumina high-throughput sequencing[J].Bioresource Technology,2015,179:436-443.
    [34]魏小涵,毕学军,尹志轩,等.温度和DO对MBBR系统硝化和反硝化的影响[J].中国环境科学,2019,39(2):612-618.Wei X H,Bi X J,Yin Z X,et al. Effects of temperature and dissolved oxygen on nitrification and denitrification in MBBR system[J]. China Environmental Science,2019,39(2):612-618.
    [35]王永平,谢瑞,晁建颖,等.蓝藻水华及其降解对沉积物-水微界面的影响[J].环境科学,2018,39(7):3179-3186.Wang Y P,Xie R,Chao J Y,et al. Effects of algal blooms and their degradation on the sediment-water micro-interface[J].Environmental Science,2018,39(7):3179-3186.
    [36] Seitzinger S,Harrison J A,Bhlke J K,et al. Denitrification across landscapes and waterscapes:A synthesis[J]. Ecological Applications,2006,16(6):2064-2090.
    [37] Mc Gill B J,Etienne R S,Gray J S,et al. Species abundance distributions:Moving beyond single prediction theories to integration within an ecological framework[J]. Ecology Letters,2007,10(10):995-1015.
    [38]刘霞,徐青,史淼森,等.沱江流域沉积物中氮赋存状态及其垂向分布特征[J].岩矿测试,2018,37(3):320-326.Liu X,Xue Q,Shi M S,et al. Nitrogen species and vertical distribution characteristics in the sediment of the Tuo River[J].Rock and Mineral Analysis,2018,37(3):320-326.
    [39]胡杰,何晓红,李大平,等.鞘氨醇单胞菌研究进展[J].应用与环境生物学报,2007,13(3):431-437.Hu J, He X H, Li D P, et al. Progress in research of sphingomonas[J]. Chinese Journal of Applied&Environmental Biology,2007,13(3):431-437.
    [40] Kowalchuk G A,Stephen J R. Ammonia-oxidizing bacteria:A model for molecular microbial ecology[J]. Annual Review of Microbiology,2001,55:485-529.
    [41]王弘宇,马放,杨开,等.两株异养硝化细菌的氨氮去除特性[J].中国环境科学,2009,29(1):47-52.Wang H Y,Ma F,Yang K,et al. Ammonia removal by two strains of heterotrophic nitrifying bacteria[J]. China Environmental Science,2009,29(1):47-52.
    [42] Takahashi R,Ohishi M,Ohshima M,et al. Characteristics of an ammonia-oxidizing bacterium with a plasmid isolated from alkaline soils and its phylogenetic relationship[J]. Journal of Bioscience and Bioengineering,2001,92(3):232-236.
    [43]白刃,贺纪正,沈菊培,等.厌氧铵氧化过程中关键酶及相关分子标记在生态学研究中的应用进展[J].生态学报,2016,36(13):3871-3881.Bai R,He J Z,Shen J P,et al. Review of the key enzymes in the anammox process and ecological inferences derived from related molecular markers[J]. Acta Ecologica Sinica,2016,36(13):3871-3881.
    [44]赵兴青,杨柳燕,于振洋,等.太湖沉积物理化性质及营养盐的时空变化[J].湖泊科学,2007,19(6):698-704.Zhao X Q,Yang L Y,Yu Z Y,et al. Temporal and spatial distribution of physicochemical characteristics and nutrients in sediments of Lake Taihu[J]. Journal of Lake Sciences,2007,19(6):698-704.
    [45]董慧,郑西来,张健.河口沉积物孔隙水营养盐分布特征及扩散通量[J].水科学进展,2012,23(6):815-821.Dong H,Zheng X L,Zhang J,et al. Distribution of nutrients in interstitial water and diffusion flux in estuary[J]. Advances in Water Science,2012,23(6):815-821.
    [46] Barnard R, Leadley P W, Hungate B A. Global change,nitrification, and denitrification:A review[J]. Global Biogeochemical Cycles,2015,19(1):GB1007.
    [47] Senbayram M,Chen R,Budai A,et al. N2O emission and the N2O/(N2O+N2)product ratio of denitrification as controlled by available carbon substrates and nitrate concentrations[J].Agriculture,Ecosystems&Environment,2012,147:4-12.
    [48] Wyman M,Hodgson S,Bird C. Denitrifying alphaproteobacteria from the Arabian sea that express nos Z,the gene encoding nitrous oxide reductase,in oxic and suboxic waters[J]. Applied and Environmental Microbiology,2013,79(8):2670-2681.
    [49]孔庆鑫,李君文,王新为,等.一种新的好氧反硝化菌筛选方法的建立及新菌株的发现[J].应用与环境生物学报,2005,11(2):222-225.Kong Q X,Li J W,Wang X W,et al. A new screening method for aerobic denitrification bacteria and isolation of a novel strain[J]. Chinese Journal of Applied&Environmental Biology,2005,11(2):222-225.
    [50]张小玲,梁运祥.一株反硝化细菌的筛选及其反硝化特性的研究[J].淡水渔业,2006,36(5):28-32.Zhang X L,Liang Y X. Screening of a strain denitrobacteria and its denitrification characteristic[J]. Freshwater Fisheries,2006,36(5):28-32.
    [51]曹微微,肖海丰,臧淑英.连环湖敖包泡沉积物磷形态垂向分布特征[J].水土保持学报,2017,31(2):279-286,292.Cao W W, Xiao H F, Zang S Y. Vertical distribution characteristics of phosphorus fractions in the sediments from Aobao in Lianhuan Lake[J]. Journal of Soil and Water Conservation,2017,31(2):279-286,292.
    [52] Ni Z K, Wang S R. Economic development influences on sediment-bound nitrogen and phosphorus accumulation of lakes in China[J]. Environmental Science and Pollution Research,2015,22(23):18561-18573.
    [53]潘婷婷,赵雪,袁轶君,等.三峡水库沉积物不同赋存形态磷的时空分布[J].环境科学学报,2016,36(8):2968-2973.Pan T T,Zhao X,Yuan Y J,et al. Spatio-temporal distribution characteristics of different phosphorus forms in sediments from the Three Gorges Reservoir[J]. Acta Scientiae Circumstantiae,2016,36(8):2968-2973.
    [54]刘恩峰,沈吉,杨丽原,等.南四湖及主要入湖河流沉积物中磷的赋存形态研究[J].地球化学,2008,37(3):290-296.Liu E F,Shen J,Yang L Y,et al. Occurrence of phosphorus in sediments of Nansihu Lake and its main inflow rivers[J].Geochimica,2008,37(3):290-296.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700