用户名: 密码: 验证码:
低强度脉冲超声调控滑膜巨噬细胞极化抑制关节滑膜炎
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Low-intensity pulsed ultrasound suppresses synovitis by modulating polarization of synovial macrophages in mice with osteoarthritis
  • 作者:张斌 ; 倪振洪 ; 杨鹏 ; 旷梁 ; 阳俊 ; 谢杨丽 ; 蒋宛凌 ; 刘汨 ; 杜晓兰 ; 陈林
  • 英文作者:ZHANG Bin;NI Zhenhong;YANG Peng;KUANG Liang;OUYANG Junjie;XIE Yangli;JIANG Wanling;LIU Mi;DU Xiaolan;CHEN Lin;State Key Laboratory of Trauma,Burns and Combined Injury,Labratory of Trauma,Department of Rehabilitation Medicine for War Injuries,Center of Bone Metabolism and Repair,Institute of Surgery Research,Army Medical University(Third Military Medical University);
  • 关键词:低强度脉冲超声 ; 关节炎 ; 巨噬细胞 ; 极化
  • 英文关键词:low-intensity pulsed ultrasound;;osteoarthritis;;macrophages;;polarization
  • 中文刊名:DSDX
  • 英文刊名:Journal of Third Military Medical University
  • 机构:陆军军医大学(第三军医大学)野战外科研究所:创伤、烧伤与复合伤国家重点实验室创伤实验室战创伤康复研究室骨代谢与修复中心;
  • 出版日期:2019-02-22 09:46
  • 出版单位:第三军医大学学报
  • 年:2019
  • 期:v.41;No.559
  • 基金:国家自然科学基金重点项目(81530071);; 军事医学创新工程重点项目(16CXZ016)~~
  • 语种:中文;
  • 页:DSDX201908006
  • 页数:10
  • CN:08
  • ISSN:50-1126/R
  • 分类号:31-40
摘要
目的探讨低强度脉冲超声(low-intensity pulsed ultrasound,LIPUS)抑制关节滑膜炎的作用和可能机制。方法采用小鼠内侧半月板不稳定(destabilization of medial meniscus,DMM)关节炎模型。21只小鼠按随机数字表法分为3组:对照组、DMM组和DMM+LIPUS组。组织学分析各组膝关节滑膜病理改变,统计滑膜中iNOS或CD206阳性细胞占F4/80阳性巨噬细胞的比例。将体外培养的THP-1细胞系分为对照组、LIPUS组、LPS(lipopolysaccharide)组和LPS+LIPUS组,将Raw 264.7细胞分为LPS组和LPS+LIPUS组。采用荧光定量PCR技术检测IL-1β、TNF-α、IL-10和精氨酸酶1(Arg1)等巨噬细胞极化相关基因的表达,Western blot检测p-JNK和p-NF-κB p65蛋白表达水平;激光共聚焦显微镜观察THP-1细胞NF-κBp65核转位状态。结果在DMM关节炎模型中,LIPUS处理后的小鼠滑膜的厚度比未处理组变薄(P<0.05),滑膜中M1型巨噬细胞比例减少(P<0.05),M2型巨噬细胞比例增加(P<0.05);在LPS诱导的炎症条件下,LIPUS处理抑制THP-1和Raw 264.7细胞的M1型巨噬细胞相关基因的表达,同时促进M2型巨噬细胞相关基因的表达,抑制了p-JNK和p-NF-κB p65的蛋白表达水平(P<0.05),LIPUS抑制THP-1细胞NF-κB p65的核转位(P<0.05)。结论 LIPUS可以缓解关节滑膜炎,该作用可能与JNK和NF-κB通路介导的滑膜巨噬细胞极化有关。
        Objective To investigate the therapeutic effect of low-intensity pulsed ultrasound(LIPUS) on synovitis in a mouse model of osteoarthritis and explore the possible mechanism. Methods We assessed the therapeutic effect of LIPUS on synovitis in a mouse model of destabilization of medial meniscus(DMM). The histopathology of the synovium of the knee joint was examined in 7 mice with DMM(model group), 7 normal mice(control group) and 7 mice with DMM treated with LIPUS. The proportion of iNOS-and CD206-positive cells in F4/80-positive macrophages in the synovium was detected. Cultured THP-1 macrophages were divided into control group, LIPUS group, lipopolysaccharide(LPS) group and LPS+LIPUS group, and Raw 264.7 cells were divided into LPS group and LPS+LIPUS group with corresponding treatments. The mRNA levels of polarization-related indexes(IL-1β, TNF-α, IL-10 and Arg1) were detected using real-time quantitative PCR after the treatments, and the protein levels of p-JNK and p-NF-κB p65 were detected using Western blotting. Confocal laser scanning microscopy was used to observe the nuclear translocation of nuclear factor-κB(NF-κB) in THP-1 cells after LPS or LPS+LIPUS treatment. Results In the mouse models of DMM, treatment with LIPUS significantly reduced the thicknesses of the synovium(P<0.05), decreased the proportion of M1 macrophages and upregulated the proportion of M2 macrophages in the synovium(P<0.05). In THP-1 and Raw 264.7 macrophages stimulated with LPS, LIPUS treatment significantly lowered IL-1β and TNF-α levels but increased IL-10 and Arg1 levels(P<0.05). LIPUS also decreased the protein levels of p-JNK and p-NF-κB p65 in LPS-stimulated macrophages(P<0.05) and suppressed LPS-induced nuclear translocation of NF-κB(P<0.05). Conclusion LIPUS produces anti-inflammatory effects on the synovium in the mouse model of osteoarthritis possibly by modulating the polarization of synovial macrophages through the JNK and NF-κB signaling pathways.
引文
[1] GLYN-JONES S,PALMER A J,AGRICOLA R,et al.Osteoarthritis[J].Lancet,2015,386(9991):376-387.DOI:10.1016/S0140-6736(14)60802-3.
    [2] HUNTER D J.Osteoarthritis[J].Ann Int Med,2007,147(3):8-16.
    [3] BAY-JENSEN A C,THUDIUM C S,GUALILLO O,et al.Biochemical marker discovery,testing and evaluation for facilitating OA drug discovery and development[J].Drug Discov Today,2018,23(2):349-358.DOI:10.1016/j.drudis.2017.10.008.
    [4] PRICE A J,ALVAND A,TROELSEN A,et al.Knee replacement[J].Lancet,2018,392(10158):1672-1682.DOI:10.1016/s0140-6736(18)32344-4.
    [5] VAN DE GRAAF V A,NOORDUYN J C A,WILLIGENBURG N W,et al.Effect of early surgery vs physical therapy on knee function among patients with nonobstructive meniscal tears[J].JAMA,2018,320(13):1328.DOI:10.1001/jama.2018.13308.
    [6] RUBIN C,BOLANDER M,RYABY J P,et al.The use of low-intensity ultrasound to accelerate the healing of fractures[J].J Bone Joint Surg Am,2001,83-A(2):259-270.
    [7] ROTHENBERG J B,JAYARAM P,NAQVI U,et al.The role of low-intensity pulsed ultrasound on cartilage healing in knee osteoarthritis:A review[J].PM&R,2017,9(12):1268-1277.DOI:10.1016/j.pmrj.2017.05.008.
    [8] ZHOU X Y,ZHANG XX,YU G Y,et al.Effects of low-intensity pulsed ultrasound on knee osteoarthritis:A meta-analysis of randomized clinical trials[J].Bio Med Res Int,2018,2018:1-7.DOI:10.1155/ 2018/7469197.
    [9] CHUNG J I,BARUA S,CHOI B H,et al.Anti-inflammatory effect of low intensity ultrasound (LIUS) on complete Freund’s adjuvant-induced arthritis synovium[J].Osteoarthr Cartilage,2012,20(4):314-322.DOI:10.1016/j.joca.2012.01.005.
    [10] NAKAMURA T,FUJIHARA S,YAMAMOTO-NAGATA K,et al.Low-intensity pulsed ultrasound reduces the inflammatory activity of synovitis[J].Ann Biomed Eng,2011,39(12):2964-2971.DOI:10.1007/s10439-011-0408-0.
    [11] ZHANG X,HU B,SUN J C,et al.Inhibitory effect of low-intensity pulsed ultrasound on the expression of lipopolysaccharide-induced inflammatory factors in U937 cells[J].J Ultrasound Med,2017,36(12):2419-2429.DOI:10.1002/jum.14239.
    [12] ZHOU D X,HUANG C,LIN Z,et al.Macrophage polarization and function with emphasis on the evolving roles of coordinated regulation of cellular signaling pathways[J].Cell Signal,2014,26(2):192-197.DOI:10.1016/j.cellsig.2013.11.004.
    [13] PORTA C,RIMOLDI M,RAES G,et al.Tolerance and M2 (alternative) macrophage polarization are related processes orchestrated by p50 nuclear factor B[J].Proc Nat Acad Sci U S A,2009,106(35):14978-14983.DOI:10.1073/pnas.0809784106.
    [14] GLASSON SS,BLANCHET T J,MORRIS E A.The surgical destabilization of the medial meniscus (DMM) model of osteoarthritis in the 129/SvEv mouse[J].Osteoarthr Cartilage,2007,15(9):1061-1069.DOI:10.1016/j.joca.2007.03.006.
    [15] CHEVALIER X,EYMARD F,RICHETTE P.Biologic agents in osteoarthritis:hopes and disappointments[J].Nat Rev Rheumatol,2013,9(7):400-410.DOI:10.1038/ nrrheum.2013.44.
    [16] O’NEILL T W,PARKES M J,MARICAR N,et al.Synovial tissue volume:A treatment target in knee osteoarthritis (OA)[J].Ann Rheum Dis,2016,75(1):84-90.DOI:10.1136/ annrheumdis-2014-206927.
    [17] ROEMER F W,KASSIM JAVAID M,GUERMAZI A,et al.Anatomical distribution of synovitis in knee osteoarthritis and its association with joint effusion assessed on non-enhanced and contrast-enhanced MRI[J].Osteoarthr Cartilage,2010,18(10):1269-1274.DOI:10.1016/j.joca.2010.07.008.
    [18] KRAUS V B,MCDANIEL G,HUEBNER J L,et al.Directin vivo evidence of activated macrophages in human osteoarthritis[J].Osteoarthr Cartil,2016,24(9):1613-1621.DOI:10.1016/j.joca.2016.04.010.
    [19] BONDESON J,BLOM A B,WAINWRIGHT S,et al.The role of synovial macrophages and macrophage-produced mediators in driving inflammatory and destructive responses inosteoarthritis[J].Arthritis Rheum,2010,62(3):647-657.DOI:10.1002/art.27290.
    [20] LAWRENCE T,NATOLI G.Transcriptional regulation of macrophage polarization:enabling diversity withidentity[J].Nat Rev Immunol,2011,11(11):750-761.DOI:10.1038/ nri3088.
    [21] ZHANG H Y,LIN C X,ZENG C,et al.Synovial macrophage M1 polarisation exacerbates experimental osteoarthritis partially through R-spondin-2[J].Ann Rheum Dis,2018,77(10):annrheumdis-2018-213450.DOI:10.1136/annrheumdis-2018-213450.
    [22] LIU B L,ZHANG M Q,ZHAO J M,et al.Imbalance of M1/M2 macrophages is linked to severity level of kneeosteoarthritis[J].Exp Ther Med,2018,16(6):5009-5014.DOI:10.3892/etm.2018.6852.
    [23] MANFERDINI C,PAOLELLA F,GABUSI E,et al.Adipose stromal cells mediated switching of the pro-inflammatory profile of M1-like macrophages is facilitated by PGE2:in vitro evaluation[J].Osteoarthr Cartilage,2017,25(7):1161-1171.DOI:10.1016/j.joca.2017.01.011.
    [24] DA SILVA JUNIOR E M,MESQUITA-FERRARI R A,FRAN?A C M,et al.Modulating effect of low intensity pulsed ultrasound on the phenotype of inflammatory cells[J].Biomed Pharmacother,2017,96:1147-1153.DOI:10.1016/j.biopha.2017.11.108.
    [25] ZHU L N,ZHAO Q J,YANG T,et al.Cellular metabolism and macrophage functional polarization[J].Int Rev Immunol,2015,34(1):82-100.DOI:10.3109/ 08830185.2014.969421.
    [26] GAO S,LI C W,ZHU Y J,et al.PEDF mediates pathological neovascularization by regulating macrophage recruitment and polarization in the mouse model of oxygen-induced retinopathy[J].Sci Rep,2017,7:42846.DOI:10.1038/ srep42846.
    [27] SICA A,MANTOVANI A.Macrophage plasticity and polarization:in vivo veritas[J].J Clin Invest,2012,122(3):787-795.DOI:10.1172/JCI59643.
    [28] MAYU N G,TANABE N,MANAKA S,et al.LIPUS suppressed LPS-induced IL-1α through the inhibition of NF-κB nuclear translocation via AT1-PLCβ pathway in MC3T3-E1 cells[J].J Cell Physiol,2017,232(12):3337-3346.DOI:10.1002/jcp.25777.
    [29] ENGELMANN J,VITTO M F,CESCONETTO P A,et al.Pulsed ultrasound and dimethylsulfoxide gel treatment reduces the expression of pro-inflammatory molecules in an animal model of muscle injury[J].Ultrasound Med Biol,2012,38(8):1470-1475.DOI:10.1016/j.ultrasmedbio.2012.03.020.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700