用户名: 密码: 验证码:
以一种黏土矿物材料为非均相类芬顿催化剂对甲基橙的降解
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Clay Mineral Material as Catalyst in Fenton-Like Reactions for Degradation of Methyl Orange
  • 作者:阿旺次仁 ; 李红娜 ; 唐哲仁 ; 彭怀丽 ; 朱昌雄 ; 李锺斗 ; 方建雄
  • 英文作者:AWANG Ciren;LI Hongna;TANG Zheren;PENG Huaili;ZHU Changxiong;LEE Jongdoo;BAHNG Gunwoong;Agricultural Clear Watershed Group,Institute of Environment and Sustainable Development in Agriculture,Chinese Academy of Agricultural Sciences;Quantum Energy Research Center;QELBY Institute in State University of New York;
  • 关键词:甲基橙 ; 非均相类芬顿 ; 催化剂 ; 矿物材料 ; 吸附 ; 降解
  • 英文关键词:methyl orange;;heterogeneous Fenton-like;;mineral material;;catalysis;;adsorption;;degradation
  • 中文刊名:HJKX
  • 英文刊名:Research of Environmental Sciences
  • 机构:中国农业科学院农业环境与可持续发展研究所农业清洁流域团队;韩国(株)量子能技术研究所;韩国纽约州立大学QELBY研究院;
  • 出版日期:2017-08-21 09:58
  • 出版单位:环境科学研究
  • 年:2017
  • 期:v.30;No.238
  • 基金:韩国量子能公司农业用颗粒(丸)粉末及使用方法在中国农业生产中实用效果测试计划[开(2015)1];; 国家水体污染控制与治理科技重大专项(2014ZX07101-012-001)
  • 语种:中文;
  • 页:HJKX201711015
  • 页数:8
  • CN:11
  • ISSN:11-1827/X
  • 分类号:111-118
摘要
为实现以甲基橙为代表的偶氮类染料的高效降解,采用一种黏土矿物材料——Quantum Energy~Radiating Material(下称QE)为催化剂,系统分析了其在非均相类芬顿反应中的催化剂协同静态吸附作用,并考察了不同因素对甲基橙去除效果的影响,同时基于降解过程中Fe2+和总Fe析出量(以ρ计)、·OH等的变化过程,探讨了QE降解甲基橙的作用机制.结果表明,QE对甲基橙具有良好的吸附作用,同时,其作为非均相类芬顿催化剂对甲基橙的降解受到pH、温度、c(H_2O_2)、催化剂投加量等因素的影响.优化后的降解条件:初始ρ(甲基橙)为50 mg/L、QE投加量为5 g/L、c(H_2O_2)为100 mmol/L、pH为2、温度为60℃,在该条件下反应40 min后,甲基橙的去除率可达到99%.以叔丁醇作为·OH淬灭剂,随着c(叔丁醇)的增高,反应体系中甲基橙的去除率随之下降,说明·OH在该体系甲基橙降解中起重要作用;对在反应过程中Fe2+和总Fe析出量的监测数据表明,体系中QE对甲基橙的降解为均相芬顿反应、非均相芬顿反应和吸附作用协同作用的结果.研究显示,以QE为催化剂,通过吸附协同催化氧化作用可以有效处理含甲基橙的染料废水.
        ‘Quantum Energy~ Radiating Material'(QE),a type of clay mineral material,was applied in the degradation of azo dye(represented by methyl orange). The synergistic effects of both static adsorption and heterogeneous Fenton-type catalyst of QE were systematically analyzed,and their effects on methyl orange degradation under different influencing factors were also discussed. The degrading mechanism of methyl orange with QE was then discussed based on the monitoring of ferrous ion,total iron and hydroxyl free radicals during the whole process. The results showed that QE showed good adsorption capacity,and the effectiveness of degradation of methyl orange was influenced by pH, temperature, the concentration of H_2O_2 and the dosage of catalyst when QE was used as the heterogeneous Fenton-type catalyst. The removal rate of methyl orange could reach 99% under the optimized conditions of 50 mg/L ρ(methyl orange),5 g/L ρ(QE),100 mmol/L c(H_2O_2),pH 2. 0 and temperature 60 ℃ for 40 min.Furthermore,the production of·OH and its significant function in methyl orange degradation was demonstrated after tertiarybutanol was added as the scavenger of ·OH in the system. In combination with the monitoring data of the Fe2+and total Fe in the process,it was indicated that the degradation of methyl orange was the synergic result of adsorption with QE,and reactions in homogeneous and heterogeneous phases as well. These results showed that application of QE through adsorption and oxidation is effective in disposing wastewater with methyl orange.
引文
[1]BIBI I,ICENHOWER J,NIAZI N K,et al.Environmental materials and waste:resource recovery and pollution prevention[M].New York:Elsevier Science Publishing Company Inc.,2016:543-567.
    [2]JIE He,YANG Xiaofang,MEN Bin,et al.Interfacial mechanisms of heterogeneous Fenton reactions catalyzed by iron-based materials:a review[J].Journal of Environmental Sciences,2016,39(1):97-109.
    [3]BARHOUMI N,OTURAN N,OLVERA-VARGAS H,et al.Pyrite as a sustainable catalyst in electro-Fenton process for improving oxidation of sulfamethazine:kinetics,mechanism and toxicity assessment[J].Water Research,2016,94:52-61.
    [4]WANG Yan,GAO Yaowen,CHEN Lu,et al.Goethite as an efficient heterogeneous Fenton catalyst for the degradation of methyl orange[J].Catalysis Today,2015,252:107-112.
    [5]FIDA H,ZHANG G,GUO S,et al.Heterogeneous Fenton degradation of organic dyes in batch and fixed bed using La-Fe montmorillonite as catalyst[J].Journal of Colloid&Interface Science,2016,490(15):859-868.
    [6]AUSAVASUKHI A,SOOKNOI T.Catalytic activity enhancement by thermal treatment and re-swelling process of natural containing ironclay for Fenton oxidation[J].Journal of Colloid&Interface Science,2014,436:37-40.
    [7]INCHAURRONDO N,FONT J,RAMOS C P,et al.Natural diatomites:efficient green catalyst for Fenton-like oxidation of Orange II[J].Applied Catalysis B:Environmental,2016,181:481-494.
    [8]余力.超声助电气石类芬顿及电气石负载Ti O2光催化降解水中双酚A的研究[D].天津:南开大学,2014:26-27.
    [9]ESPAA V A A,SARKAR B,BISWAS B,et al.Environmental applications of thermally modified and acid activated clay minerals:current status of the art[J].Environmental Technology&Innovation,2016.doi:10.1016/j.eti,2016.11.005.
    [10]LI Gang,GUO Shuhai,HU Jinxuan.The influence of clay minerals and surfactants on hydrocarbon removal during the washing of petroleum-contaminated soil[J].Chemical Engineering Journal,2016,286:191-197.
    [11]MIRZAEI N,HADI M,GHOLAMI M,et al.Sorption of acid dye by surfactant modificated natural zeolites[J].Journal of the Taiwan Institute of Chemical Engineers,2015,59:186-194.
    [12]SELIM K A,YOUSSEF M A,ABD E F H,et al.Dye removal using some surface modified silicate minerals[J].International Journal of Mining Science and Technology,2014,24(2):183-189.
    [13]STAWIN'SKI W,W E‘GRZYN A,FREITAS O,et al.Simultaneous removal of dyes and metal cations using an acid,acid-base and base modified vermiculite as a sustainable and recyclable adsorbent[J].Science of the Total Environment,2017,576(1):398-408.
    [14]LI Jian,GUAN Peng,ZHANG Yan,et al.A diatomite coated mesh with switchable wettability for on-demand oil/water separation and organic pollutants adsorption[J].Separation&Purification Technology,2017,174:275-281.
    [15]ZHANG Yuting,LIU Cao,XU Bingbing,et al.Degradation of benzotriazole by a novel Fenton-like reaction with mesoporous Cu/Mn O2:combination of adsorption and catalysis oxidation[J].Applied Catalysis B:Environmental,2016,199:447-457.
    [16]JAFARI A J,KAKAVANDI B,JAAFARZADEH N,et al.Fentonlike catalytic oxidation of tetracycline by AC@Fe3O4as a heterogeneous persulfate activator:adsorption and degradation studies[J].Journal of Industrial&Engineering Chemistry,2017,45:323-333.
    [17]阿旺次仁,彭怀丽,朱昌雄,等.一种新型环境修复材料的制备及其功能分析[J].中国农业气象,2016(5):513-519.AWANG Ciren,PENG Huaili,ZHU Changxiong,et al.Preparation and function of a new environmental restoration material[J].Chinese Journal of Agrometeorology,2016(5):513-519.
    [18]BAHNG G W,LEE J D.Development of heat-generating polyester fiber harnessing catalytic ceramic powder combined with heatgenerating super microorganisms[J].Textile Research Journal,2014,84(11):1220-1230.
    [19]LEE J D,KULKARNI A,KIM T,et al.Electrical properties of“Quantum EnergyRadiating Material”produced from natural clay minerals of south Korea[J].Materials Focus,2014,3(6):491-495.
    [20]国家环境保护总局.HJ/T 345─2007水质铁的测定邻菲啰啉分光光度法[S].北京:中国环境出版社,2007.
    [21]ARAMI M,LIMAEE N Y,MAHMOODI N M,et al.Removal of dyes from colored textile wastewater by orange peel adsorbent:Equilibrium and kinetic studies[J].Journal of Colloid&Interface Science,2005,288(2):371-376.
    [22]KRIKA F,BENLAHBIB O E F.Removal of methyl orange from aqueous solution via adsorption on cork as a natural and low-coast adsorbent:equilibrium,kinetic and thermodynamic study of removal process[J].Desalination&Water Treatment,2014,53(13):3711-3723.
    [23]SUBBAIAH M V,KIM D S.Adsorption of methyl orange from aqueous solution by aminated pumpkin seed powder:kinetics,isotherms,and thermodynamic studies[J].Ecotoxicology&Environmental Safety,2016,128:109-117.
    [24]陈盛,罗志敏,刘燕.壳聚糖-沸石杂化膜的制备及其对甲基橙的吸附[J].环境工程学报,2012,6(5):1613-1618.CHEN Sheng,LUO Zhimin,LIU Yan.Preparation of chitosan-zeolite hybrid membrane and its adsorption to methyl orange[J].Chinese Journal of Environmental Engineering,2012,6(5):1613-1618.
    [25]DU Weiping,XU Yiming,WANG Yansong.Photoinduced degradation of orange II on different iron(hydr)oxides in aqueous suspension:rate enhancement on addition of hydrogen peroxide,silver nitrate,and sodium fluoride[J].Langmuir,2008,24(1):175-181.
    [26]DAUD N K,HAMEED B H.Decolorization of acid red 1 by Fentonlike process using rice husk ash-based catalyst[J].Journal of Hazardous Materials,2010,176(1/2/3):938-944.
    [27]GHISELLI G,JARDIM W F,LITTER M I,et al.Destruction of EDTA using Fenton and photo-Fenton-like reactions under UV-A irradiation[J].Journal of Photochemistry&Photobiology A:Chemistry,2004,167(1):59-67.
    [28]李艳.天然铁电气石Fenton反应降解甲基橙的效能与机理研究[D].哈尔滨:哈尔滨理工大学,2012:19-20.
    [29]XU Lejin,WANG Jianlong.Magnetic nanoscaled Fe3O4/Ce O2composite as an efficient Fenton-like heterogeneous catalyst for degradation of 4-chlorophenol[J].Environmental Science&Technology,2012,46(18):10145-10153.
    [30]RUSEVOVA K,KOPINKE F D,GEORGI A.Nano-sized magnetic iron oxides as catalysts for heterogeneous Fenton-like reactionsInfluence of Fe(II)/Fe(III)ratio on catalytic performance[J].Journal of Hazardous Materials,2012,241/242(1):433-440.
    [31]YU Li,WANG Cuiping,REN Xinhao,et al.Catalytic oxidative degradation of bisphenol a using an ultrasonic-assisted tourmalinebased system:influence factors and mechanism study[J].Chemical Engineering Journal,2014,252(18):346-354.
    [32]REISZ E,SCHMIDT W,SCHUCHMANN H P,et al.Photolysis of ozone in aqueous solutions in the presence of tertiary butanol[J].Environmental Science&Technology,2003,37:1941-1948
    [33]CHAKMA S,DAS L,MOHOLKAR V S.Dye decolorization with hybrid advanced oxidation processes comprising sonolysis/Fentonlike/photo-ferrioxalate systems:a mechanistic investigation[J].Separation&Purification Technology,2015,156:596-607.
    [34]COSTA R C C,MOURA F C C,ARDISSON J D,et al.Highly active heterogeneous Fenton-like systems based on Fe O/Fe3O4,composites prepared by controlled reduction of iron oxides[J].Applied Catalysis B:Environmental,2008,83(1):131-139.
    [35]WEI Luo,ZHU Lihua,NAN Wang,et al.Efficient removal of organic pollutants with magnetic nanoscaled Bi Fe O3as a reusable heterogeneous Fenton-like catalyst[J].Environmental Science&Technology,2010,44(5):1786-1791.
    [36]汪快兵,方迪,徐峙晖,等.生物合成施氏矿物作为类芬顿反应催化剂降解甲基橙的研究[J].环境科学,2015,36(3):995-999.WANG Kuaibing,FANG Di,XU Zhenghui,et al.Biosynthetic schwertmannite as catalyst in Fenton-like reactions for degradation of methyl orange[J].Environmental Science,2015,36(3):995-999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700