用户名: 密码: 验证码:
可调节比例的功/冷联供卡林纳循环系统性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Performance investigation on Kalina cycle with adjustable ratio based power/refrigeration cogeneration system
  • 作者:张少波 ; 陈亚平 ; 吴嘉峰 ; 朱子龙
  • 英文作者:Zhang Shaobo;Chen Yaping;Wu Jiafeng;Zhu Zilong;Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University;School of Energy and Environment, Southeast University;
  • 关键词:氨水工质 ; 卡林纳循环 ; 分流比 ; 功/冷联供 ; 综合动力回收效率
  • 英文关键词:ammonia water mixture;;Kalina cycle;;split fraction;;power/refrigeration cogeneration;;comprehensive power recovery efficiency
  • 中文刊名:DNDX
  • 英文刊名:Journal of Southeast University(Natural Science Edition)
  • 机构:东南大学能源热转换及其过程测控教育部重点实验室;东南大学能源与环境学院;
  • 出版日期:2019-05-20
  • 出版单位:东南大学学报(自然科学版)
  • 年:2019
  • 期:v.49
  • 基金:国家自然科学基金资助项目(51776035)
  • 语种:中文;
  • 页:DNDX201903016
  • 页数:6
  • CN:03
  • ISSN:32-1178/N
  • 分类号:105-110
摘要
提出和研究了一种可根据用户所需调节比例的功/冷联供卡林纳循环系统.在三压力卡林纳循环基础上增加了一条由发生精馏塔、冷凝器、蒸发器和过冷器组成的制冷子回路,与锅炉和透平组成的动力回路相并联.新增制冷回路将锅炉出口热源进一步利用后提供额外制冷量,从而提升整个循环的综合性能.制冷蒸发器中的蒸发压力由循环基本溶液浓度所决定,因此制冷温度可以保持在较低水平(-25~-5℃).研究结果表明,在烟气热源、冷却水进口温度分别为350和32℃的条件下,系统取工作浓度0.54及对应的最小分流比0.53时,循环性能最佳,其综合动力回收效率可达23.41%,比相同条件下优化后的常规三压力卡林纳循环及氨水朗肯循环的动力回收效率分别提高了17.28%和43.18%.
        A power/refrigeration cogeneration system was proposed and investigated based on the triple pressure Kalina cycle with the adjustable ratio of power and refrigeration capacities according to the user demands. The refrigeration branch, including generation-rectification column, condenser, evaporator and subcooler, was added parallel to the power generation branch of boiler and turbine, to further utilize the heat source from the boiler exit and to provide an additional refrigeration capacity, improving the performance of the entire cycle system. The pressure in the evaporator was determined by the basic solution of the cycle, thus the refrigeration temperature could be kept at-25 to-5 ℃. The results show that under the conditions of flue gas heat source and cooling water inlet temperatures of 350 and 32 ℃, the optimum cycle performance can be achieved with work concentration of 0.54 and the corresponding minimum split fraction of 0.53, and the comprehensive power recovery efficiency can reach 23.41%, which is 17.28% and 43.18% higher than that of the conventional triple pressure Kalina cycle and ammonia-water Rankine cycle under the same conditions.
引文
[1] 钱虹,杨明,陈丹,等.分布式能源站三联供系统优化运行策略研究[J].热能动力工程,2016,31(6):74-79,125.DOI:10.16146/j.cnki.rndlgc.2016.06.012.Qian H,Yang M,Chen D,et al.Optimization strategies for the operation of CCHP system in distributed energy station[J].Journal of Engineering for Thermal Energy and Power,2016,31(6):74-79,125.DOI:10.16146/j.cnki.rndlgc.2016.06.012.(in Chinese)
    [2] 董福贵,张也,尚美美.分布式能源系统多指标综合评价研究[J].中国电机工程学报,2016,36(12):3214-3223.DOI:10.13334/j.0258-8013.pcsee.152536.Dong F G,Zhang Y,Shang M M.Multi-criteria comprehensive evaluation of distributed energy system[J].Proceedings of the CSEE,2016,36(12):3214-3223.DOI:10.13334/j.0258-8013.pcsee.152536.(in Chinese)
    [3] 连红奎,李艳,束光阳子,等.我国工业余热回收利用技术综述[J].节能技术,2011,29(2):123-128,133.Lian H K,Li Y,Shu G Y Z,et al.An overview of domestic technologies for waste heat utilization[J].Energy Conservation Technology,2011,29(2):123-128,133.(in Chinese)
    [4] Kalina A I.Combined-cycle system with novel bottoming cycle[J].Journal of Engineering for Gas Turbines and Power,1984,106(4):737-742.DOI:10.1115/1.3239632.
    [5] 陈亚平.改进型卡列纳循环的热力分析[J].东南大学学报,1989,19(4):52-59.Chen Y P.Thermodynamic analysis on a modified Kalina cycle[J].Journal of Southeast University,1989,19(4):52-59.(in Chinese)
    [6] Guo Z W,Zhang Z,Chen Y P,et al.Dual-pressure vaporization Kalina cycle for cascade reclaiming heat resource for power generation[J].Energy Conversion and Management,2015,106:557-565.DOI:10.1016/j.enconman.2015.09.073.
    [7] Hua J Y,Chen Y P,Wang Y D,et al.Thermodynamic analysis of ammonia-water power/chilling cogeneration cycle with low-grade waste heat[J].Applied Thermal Engineering,2014,64(1/2):483-490.DOI:10.1016/j.applthermaleng.2013.12.043.
    [8] Du S,Wang R Z,Chen X.Analysis on maximum internal heat recovery of a mass-coupled two stage ammonia water absorption refrigeration system[J].Energy,2017,133:822-831.DOI:10.1016/j.energy.2017.05.149.
    [9] Goswami D Y.Solar thermal power technology:Present status and ideas for the future[J].Energy Sources,1998,20(2):137-145.DOI:10.1080/00908319808970052.
    [10] Zheng D X,Chen B,Qi Y,et al.Thermodynamic analysis of a novel absorption power/cooling combined-cycle[J].Applied Energy,2006,83(4):311-323.DOI:10.1016/j.apenergy.2005.02.006.
    [11] Zhang N,Lior N.Development of a novel combined absorption cycle for power generation and refrigeration[J].Journal of Energy Resources Technology,2007,129(3):254-265.DOI:10.1115/1.2751506.
    [12] Liu M,Zhang N.Proposal and analysis of a novel ammonia-water cycle for power and refrigeration cogeneration[J].Energy,2007,32(6):961-970.DOI:10.1016/j.energy.2006.09.012.
    [13] 刘猛,张娜,蔡睿贤.氨吸收式串联型动力/制冷复合循环[J].工程热物理学报,2006,27(1):9-12.DOI:10.3321/j.issn:0253-231X.2006.01.003.Liu M,Zhang N,Cai R X.A series connected ammonia absorption power/refrigeration combined cycle[J].Journal of Engineering Thermophysics,2006,27(1):9-12.DOI:10.3321/j.issn:0253-231X.2006.01.003.(in Chinese)
    [14] 高田秋一.吸收式制冷机[M].耿惠彬,等译.北京:机械工业出版社,1987:191-201.
    [15] Vijayaraghavan S,Goswami D Y.On evaluating efficiency of a combined power and cooling cycle[J].Journal of Energy Resources Technology,2003,125(3):221-227.DOI:10.1115/1.1595110.
    [16] Saleh B,Koglbauer G,Wendland M,et al.Working fluids for low-temperature organic Rankine cycles[J].Energy,2007,32(7):1210-1221.DOI:10.1016/j.energy.2006.07.001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700