用户名: 密码: 验证码:
固结磨料确定性研磨表面生成建模与实验分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Surface Generation Modeling and Experimental Analysis of the Fixed Abrasive Deterministic Lapping Process
  • 作者:林彬 ; 李凯隆 ; 曹中臣 ; 姜向敏 ; 黄田
  • 英文作者:Lin Bin;Li Kailong;Cao Zhongchen;Jiang Xiangmin;Huang Tian;Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education,Tianjin University;School of Mechanical Engineering,Tianjin University;
  • 关键词:固结磨料研磨 ; 工艺参数 ; 表面生成模型 ; 轨迹
  • 英文关键词:fixed abrasive lapping;;process parameters;;surface generation model;;trajectory
  • 中文刊名:TJDX
  • 英文刊名:Journal of Tianjin University(Science and Technology)
  • 机构:天津大学先进陶瓷与加工技术教育部重点实验室;天津大学机械工程学院;
  • 出版日期:2019-06-11
  • 出版单位:天津大学学报(自然科学与工程技术版)
  • 年:2019
  • 期:v.52;No.345
  • 基金:国家科技重大专项项目(2017ZX04022001-206);; 天津市自然科学基金重点资助项目(18JCZDJC38900)~~
  • 语种:中文;
  • 页:TJDX201909004
  • 页数:15
  • CN:09
  • ISSN:12-1127/N
  • 分类号:33-47
摘要
基于CCOS技术原理,提出高效、高可控性的固结磨料确定性研磨工艺.通过线研磨实验发现采用中心供给研磨液方式相比于传统四周供液方式有利于提高加工效率及表面质量.分析了工艺参数对加工后表面硬度的影响,通过扫描电镜观察研磨后的表面形貌,分析固结磨料研磨的材料去除机制.通过不同参数线研磨实验验证了材料去除率与工具转速、载荷、时间呈线性关系,表明固结磨料研磨工艺的材料去除过程符合CCOS的卷积迭代原理.基于晶胞理论和磨粒粒径均匀的假设,建立了固结磨料研磨垫表面形貌的仿真模型.同时,模型考虑了磨粒浓度、磨粒粒度、研磨垫形状参数的影响.在固结磨料研磨垫形貌仿真数据的基础上,基于硬脆材料去除机理以及研磨垫与工件微观接触模型,考虑工件表面的力学性能,建立了一定参数条件下研磨垫与工件的接触间隙计算模型,进而建立了单点研磨去除斑模型.通过定点研磨实验验证了不同压力、转速、时长条件下单点研磨去除斑模型的准确性.将连续的研磨轨迹进行离散,考虑研磨垫形状、磨粒的尺寸和浓度、研磨工具的转速和承受的载荷、轨迹参数建立了总去除量与单点研磨去除量的卷积运算关系,提出固结磨料确定性研磨表面生成模型.开展不同参数下面研磨实验与表面仿真.结果表明,固结磨料确定性研磨表面生成模型能很好地预测不同参数下研磨去除的深度和研磨表面的残留误差,提高固结磨料研磨工艺的可控性.
        A highly efficient,controllable fixed abrasive deterministic lapping process based on the CCOS principle was proposed. Through the line lapping experiments,results indicate that the liquid central supply mode is beneficial to the improvement of process efficiency and surface quality compared with the traditional liquid supply mode. The influence of process parameters on the surface hardness after processing and the material removal mechanism of the fixed abrasive lapping was analyzed by scanning electron microscopy,in order to observe the surface topography of the workpiece after lapping. The linear relationships between the material removal rate and tool speed,load,time were verified by line lapping experiments with different parameters. Results reveal that the material removal process of the fixed abrasive lapping process conforms to the convolution iteration principle of CCOS. A simulation model of the surface topography of the fixed abrasive lapping pad was established based on the unit cell theory and the assumption of uniform abrasive particle size. At the same time,the effect of parameters,such as the size and concentrationof the abrasive particles and the shape of the lapping pad,were considered in the model. Based on the simulation data of fixed abrasive lapping pad topography,the calculation model of the contact gap between the lapping pad and the workpiece was established based on the removal mechanism of the hard and brittle material and the micro-contact model between the lapping pad and the workpiece. This process also considered the mechanical properties of the workpiece surface under certain parameters. Furthermore,the point lapping removal spot model was established. The accuracy rates of this model under different pressures,rotation speeds,durations were verified by point lapping experiments. After dispersing continuous machining trajectories,the convolution operation relationship between the total lapping removal and the point lapping removal was established by considering the shape of the lapping pad,the size and concentration of the abrasive particles,the rotational speed and the load of the lapping tool,and the trajectory parameters. The fixed abrasive lapping surface generation model was also proposed. Plane lapping experiments and surface simulations with different parameters were carried out. Results show that the fixed abrasive deterministic lapping surface generation model can predict the lapping removal depth and the residual error of the lapping surface under different parameters. The proposed model can also improve the controllability of the fixed abrasive lapping process.
引文
[1]Cho B J,Kim H M,Manivannan R,et al.On the mechanism of material removal by fixed abrasive lapping of various glass substrates[J].Wear,2013,302(1/2):1334-1339.
    [2]Fang C,Zhao Z,Lu L,et al.Influence of fixed abrasive configuration on the polishing process of silicon wafers[J].International Journal of Advanced Manufacturing Technology,2016,88(1):1-10.
    [3]Dong Z,Cheng H.Study on removal mechanism and removal characters for SiC and fused silica by fixed abrasive diamond pellets[J].International Journal of Machine Tools&Manufacture,2014,85(5):1-13.
    [4]Hu Z,Fang C,Deng W,et al.Speed ratio optimization for ceramic lapping with fixed diamond pellets[J].International Journal of Advanced Manufacturing Technology,2016,90(9/10/11/12):1-11.
    [5]Wang Z K,Wang Z K,Zhu Y W,et al.Effect of lapping slurry on critical cutting depth of spinel[J].Applied Surface Science,2015,347:849-855.
    [6]Fang C,Yan Z,Hu Z,et al.Pattern design of fixed abrasive pads inspired by the bee colony theory[J].International Journal of Advanced Manufacturing Technology,2018,97:2563-2574.
    [7]郭东明,康仁科,苏建修,等.超大觃模集成电路制造中硅片平坦化技术的未来发展[J].机械工程学报,2003,39(10):100-105.Guo Dongming,Kang Renke,Su Jianxiu,et a1.Future development on wafer planatization technology in ULSI fabrication[J].Chinese Journal of Mechanical Engineer,2003,39(10):100-105(in Chinese).
    [8]Gobena F T,Fletcher T D,Romero V D.Diamond fixed abrasive lapping of brittle substrates[J].Industrial Diamond Review,2004,65(1):1-3.
    [9]朱永伟,王军,李军,等.固结磨料抛光垫抛光硅片的探索研究[J].中国机械工程,2009,20(6):723-727.Zhu Yongwei,Wang Jun,Li Jun,et al.Research on the polishing of silicon wafer by fixed abrasive pad[J].China Mechanical Engineering,2009,20(6):723-727(in Chinese).
    [10]李标,李军,高平,等.游离磨料和固结磨料研磨后亚表面裂纹层深度研究[J].中国机械工程,2013,24(7):895-898.Li Biao,Li Jun,Gao Ping,et al.Study on depth of subsurface crack layer by free and fixed abrasive lapping[J].China Mechanical Engineering,2013,24(7):895-898(in Chinese).
    [11]Murray J.ICF quarterly report[J].Office of Scientific&Technical Information Technical Reports,1997,7(3):1-132.
    [12]Agarwal S,Rao P V.Modeling and prediction of surface roughness in ceramic grinding[J].International Journal of Machine Tools&Manufacture,2010,50(12):1065-1076.
    [13]Sun J,Chen P,Qin F,et al.Modelling and experimental study of roughness in silicon wafer self-rotating grinding[J].Precision Engineering,2018,51:625-637.
    [14]李军,王慧敏,王文泽,等.固结磨料研磨K9玻璃表面粗糙度模型[J].机械工程学报,2015,51(21):199-205.Li Jun,Wang Huimin,Wang Wenze,et al.Model of surface roughness in fixed abrasive lapping of K9glass[J].Journal of Mechanical Engineering,2015,51(21):199-205(in Chinese).
    [15]Wang X,Zhang X.Theoretical study on removal rate and surface roughness in grinding a RB-SiC mirror with a fixed abrasive[J].Applied Optics,2009,48(5):904-910.
    [16]Uhlmann E,Ardelta T,Spurb G.Influence of kinematics on the face grinding process on lapping machines[J].CIRP Annals-Manufacturing Technology,1999,48(1):281-284.
    [17]Wang Y,Fu Z,Dong Y,et al.Research on surface generating model in ultrasonic vibration-assisted grinding[J].International Journal of Advanced Manufacturing Technology,2018,96(1):1-8.
    [18]Zhao Y J,Li H N,Zhu L D,et al.Machined brittle material surface in grinding:Modeling,experimental validation,and image-processing-based surface analysis[J].International Journal of Advanced Manufacturing Technology,2017,93(4):1-20.
    [19]Jones R A.Optimization of computer controlled polishing[J].Applied Optics,1977,16(1):218-224.
    [20]Chen X,Rowe W B.Analysis and simulation of the grinding process.Part I:Generation of the grinding wheel surface[J].International Journal of Machine Tools&Manufacture,1996,36(8):871-882.
    [21]Liu P,Lin B,Yan S,et al.Numerical simulation and experimental validation of fixed abrasive grinding pad topography[J].International Journal of Advanced Manufacturing Technology,2015,83(5/6/7/8):1-12.
    [22]Zhao Yongwu,Marietta D M,Chang L.Closure to?discussion of‘an asperity microcontact model incorporating the transition from elastic deformation to fully plastic flow’?[J].ASME Journal of Tribology,2000,122(2):479.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700