用户名: 密码: 验证码:
基于混合铰链的三维桥式放大机构的建模、分析与试验
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Modeling, Analysis and Experiments of a Three-dimensional Bridge-type Mechanism with Combined Flexure Hinges
  • 作者:陈方鑫 ; 高福天 ; 杜志江 ; 孙立宁 ; 董为
  • 英文作者:CHEN Fangxin;GAO Futian;DU Zhijiang;SUN Lining;DONG Wei;State Key Laboratory of Robotics and System, Harbin Institute of Technology;
  • 关键词:桥式放大机构 ; 柔度矩阵法 ; 柔性铰链 ; 相对放大倍数
  • 英文关键词:bridge type mechanism;;compliance matrix method;;flexure hinges;;relative amplification rate
  • 中文刊名:JXXB
  • 英文刊名:Journal of Mechanical Engineering
  • 机构:哈尔滨工业大学机器人技术与系统国家重点实验室;
  • 出版日期:2017-11-21 13:46
  • 出版单位:机械工程学报
  • 年:2018
  • 期:v.54
  • 基金:国家自然科学基金(51475113);; 黑龙江省自然科学基金(E20150006)资助项目
  • 语种:中文;
  • 页:JXXB201813013
  • 页数:7
  • CN:13
  • ISSN:11-2187/TH
  • 分类号:124-130
摘要
为了解决全柔顺桥式放大机构实际放大倍数过低的问题,提出了一种基于混合铰链的三维桥式放大机构。该放大机构不仅保持了传统桥式放大机构对称性好、结构紧凑、设计简单的优点,而且还能实现较高的放大倍数。为了分析三维桥式机构的放大倍数和负载能力,采用了柔度矩阵法建立了机构的静力学模型,并且在此基础上提出了一种新的性能指标,即相对放大倍数,用于评价柔性放大机构的位移损失程度。3种最常用的柔性铰链被用于三维桥式机构的分析,通过仿真结果发现,当第一级机构采用V形铰链,第二级机构采用簧片式铰链的时候,三维桥式放大机构的各项性能达到最优。最后,设计加工了放大倍数为41,相对放大倍数在0.9以上的三维桥式机构,证明了分析结果的正确性。
        To solve the issue of low amplification ratio for the compliant bridge-type mechanism, a three dimensional bridge-type mechanism with combined flexure hinges is proposed, which not only remains the superiority of the conventional bridge-type mechanisms, e.g., structure symmetry, compact size and simple design, but also achieves high amplification ratio. To analyse the performance of the 3D bridge-type mechanism, the statics model is established via the compliance matrix method, based on which a new evaluation index, the relative amplification rate is proposed to measure the displacement loss of the mechanism. Several 3D bridge type mechanisms with three frequently used flexure hinges are analysed by the established model. The results show that the 3D bridge-type mechanism reaches the optimal performance when the V-shaped hinge and the filled leaf hinge are employed in bridge 1 and bridge 2 respectively. Finally, a bridge-type mechanism with amplification ratio of 41 and relative amplification rate of 0.9 is confirmed by FEA simulation and experiments.
引文
[1]DONG Wei,TANG Jiong,DEEB Y E,Design of a linear-motion dual-stage actuation system for precision control[J].Smart Materials&Structures,2009,18(9):095035.
    [2]DU Zhijiang,YANG Miao,DONG Wei,et al.Static deformation modeling and analysis of flexure hinges made of a shape memory alloy[J].Smart Materials&Structures,2016,25(11):115029.
    [3]HE Gaofa,TANG Yike,ZHOU Chuande,et al.Novel resonant accelerometer with micro leverage fabricated by MEMS technology[J].Chinese Journal of Mechanical Engineering.2011,24(3):495-500.
    [4]WANG Liping,JIANG Yao,LI Tiemin.Analytical compliance modelling of serial flexure-based compliant mechanism under arbitrary applied load[J].Chinese Journal of Mechanical Engineering,2017,30(4):951-962.
    [5]王念峰,张志远,张宪民,等,三种两自由度柔顺精密定位平台的性能对比与分析[J].机械工程学报,2016,49(6):89-96.WANG Nianfeng,ZHANG Zhiyuan,ZHANG Xianmin,et al.Performance comparison and analysis of three2-DOF compliant precision positioning stages[J].Journal of Mechanical Engineering,2016,49(6):89-96.
    [6]朱大昌,冯文结,安梓铭,整体式平面三自由度全柔顺并联机构构型拓扑优化设计[J].机械工程学报,2015,51(5):30-36.ZHU Dachang,FENG Wenjie,AN Ziming.Topology optimization integrated design of 3-DOF fully compliant planar parallel manipulator[J].Journal of Mechanical Engineering,2015,51(5):30-36.
    [7]JUUTI J,KORDAS K,LONNAKKO R,et al.Mechanically amplified large displacement piezoelectric actuators[J].Sensors&Actuators A Physical,2005,120(1):225-231.
    [8]CHOI K B,LEE J J,HATA S.A piezo-driven compliant stage with double mechanical amplification mechanisms[J].Sensors&Actuators A Physical,2010,161(1):173-181.
    [9]TANG Hui,LI Yangmin,XIAO Xiao.A novel flexure-based dual-arm robotic system for high-throughput biomanipulations on micro-fluidic chip[C]//Proceedings of the International Conference on Intelligent Robots and Systems,November 3-7,2013,Tokyo,Japan:IEEE,2013:1531-1536.
    [10]CHEN Chingming,HSU Y C,FUNG R F.System identification of a Scott–Russell amplifying mechanism with offset driven by a piezoelectric actuator[J].Applied Mathematical Modelling,2012,36(6):2788-2802.
    [11]LING Mingxiang,CAO Junyi,ZENG Minghua,et al.Enhanced mathematical modeling of the displacement amplification ratio for piezoelectric compliant mechanisms[J].Smart Materials&Structures,2016,25(7):075022.
    [12]LING Mingxiang,CAO Junyi,ZENG Minghua,et al.Modular kinematics and statics modeling for precision positioning stage[J].Mechanism&Machine Theory,2017,107:274-282.
    [13]XU Qingsong,LI Yangmin.Analytical modeling,optimization and testing of a compound bridge-type compliant displacement amplifier[J].Mechanism and Machine Theory,2011,46(2):183-200.
    [14]黄卫清,史小庆,王寅,菱形压电微位移放大机构的设计[J].光学精密工程,2015,23(3):803-809.HUANG Weiqing,SHI Xiaoqing,WANG Yan.Design of diamond piezoelectric micro displacement amplification mechanism[J].Optics and Precision Engineering,2015,23(3):803-809.
    [15]LOBONTIU N,GARCIA E.Analytical model of displacement amplification and stiffness optimization for a class of flexure-based compliant mechanisms[J].Computers&Structures,2003,81(32):2797-2810.
    [16]MA Hongwen,YAO Shaoming,WANG Liquan,et al.Analysis of the displacement amplification ratio of bridge-type flexure hinge[J].Sensors&Actuators A Physical,2006,132(2):730-736.
    [17]刘小院.基于柔性铰链通用模型的柔性位移放大机构建模方法研究[D].西安:西安电子科技大学,2014.LIU X Y.Modeling of compliant displacement amplifier based on a generalized model for conic flexure hinges[D].Xi’an:Xidian University,2014.
    [18]KIM J H,KIM S H,KWAK Y K.Development of a piezoelectric actuator using a three-dimensional bridge-type hinge mechanism[J].Review of Scientific Instruments,2003,74(5):2918-2924.
    [19]KIM J H,KIM S H,KWAK Y K.Development and optimization of 3-D bridge-type hinge mechanisms[J].Sensors and Actuators A:Physical,2004,116(3):530-538.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700