用户名: 密码: 验证码:
中国瓢虫体型的地理分异及其与环境因子的关系
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Geographical variance of ladybird morphology and environmental correlates in China
  • 作者:毕孟杰 ; 沈梦伟 ; 周可新 ; 毛岭峰 ; 陈圣宾 ; 彭培好
  • 英文作者:Mengjie Bi;Mengwei Shen;Kexin Zhou;Lingfeng Mao;Shengbin Chen;Peihao Peng;College of Earth Sciences, Chengdu University of Technology;College of Tourism and Urban-Rural Planning, Chengdu University of Technology;Nanjing Institute of Environment Sciences, Ministry of Environmental Protection;Department of Renewable Resources, University of Alberta;
  • 关键词:瓢虫 ; 体型 ; 环境因子 ; 体长 ; 体宽 ; 长宽比
  • 英文关键词:ladybirds,body size,environmental factor,body length,body width,aspect ratio
  • 中文刊名:SWDY
  • 英文刊名:Biodiversity Science
  • 机构:成都理工大学地球科学学院;成都理工大学旅游与城乡规划学院;环境保护部南京环境科学研究所;Department of Renewable Resources, University of Alberta;
  • 出版日期:2015-11-15
  • 出版单位:生物多样性
  • 年:2015
  • 期:v.23
  • 基金:国家科技支撑计划(2012BAC01B08);; 国家环境保护公益性行业科研专项(201409055)
  • 语种:中文;
  • 页:SWDY201506010
  • 页数:9
  • CN:06
  • ISSN:11-3247/Q
  • 分类号:74-82
摘要
生物体的外在形态(个体大小及异速生长)不仅是分类学的重要依据,也是影响生物与环境相互作用的重要功能性状。昆虫体型的地理分异及其机制是昆虫生物地理学的重要基础。本文基于中国省级行政区的瓢虫体型、分布和环境因子数据,运用相关和回归分析,探索了中国瓢虫体型(体长、体宽与长宽比)的纬度地带性及其与环境因子的关系。为了确定营养级对瓢虫体型特征的影响,我们对全部瓢虫、植食性瓢虫和捕食性瓢虫分别进行分析。研究结果表明:(1)瓢虫的体型大小具有显著的纬度地带性,即纬度越高,瓢虫的体长或体宽越大,符合贝格曼法则。与温度相关的环境因子是导致瓢虫体型大小地理分异的主要环境因素,因为瓢虫以成虫越冬,体型越大则能量储存越多,冬眠期间的耐饥力越强;(2)由于食性和食物空间分布的差异,在各个纬度上,植食性瓢虫体型总是大于捕食性瓢虫;捕食性瓢虫的长宽比与纬度呈显著正相关,即纬度越高,瓢虫体型越狭长;而植食性瓢虫的长宽比与纬度没有显著的相关性;捕食性瓢虫的长宽比与年降水量呈显著负相关,因为年降水量降低导致植被的斑块化增加,引起捕食对象分布更为分散,从而要求瓢虫具有更强的飞行能力,即更大的长宽比。综上所述,在省级尺度上,温度和降水分别主要影响瓢虫的大小和长宽比,其效应随营养级(食性)的变化而变化。
        The extent shape of organisms(body size and the allometry of specific parts) is not only the base for taxonomy, but also the key functional traits for understanding the interaction between organisms and environmental conditions. The geographical variance of body size, allometry, and the underlying mechanisms are fundamental for insect biogeography, but have not been fully documented. In this paper, we compiled data on body size(body length and body width), aspect ratio(body length/body width), and distribution of ladybirds in 28 provinces in China. Meanwhile, we obtained environmental variables representing temperature and precipitation from freely available data. To explore the spatial variance and environmental correlates of body size and aspect ratio in different species groups with various trophic positions, correlation and regression analyses were performed separately on herbivorous and predaceous ladybirds. Our results show that there is evident latitudinal gradient for body size of ladybirds, i.e., body length or width increases with increasing latitude. This is consistent with Bergmann's rule. Temperature-related variables are the main drivers of geographic variance of body size, because ladybirds usually overwinter as adults, and those with larger body size have more fat and therefore are more resistant to starvation in winter. Herbivorous ladybirds are always larger than predaceous ladybirds in terms of body length and width along the latitudinal gradients. This is due to discrepancies in food and nitrogen concentrations, with predaceous ladybirds having higher nitrogen concentrations than herbivorous ladybirds. Aspect ratio increases significantly with latitude for predaceous ladybirds, but not for herbivorous ladybirds. This may be explained by the high spatial dispersion of prey for predaceous ladybirds, which are further influenced by their own host plants. The most important environmental variables controlling geographic variance in aspect ratio of predaceous ladybirds are precipitation-related, but not temperature-related variables. This is because decreasing precipitation will lead to increasing patchiness of vegetation and subsequently prey for predaceous ladybirds. Increasing aspect ratio and accordingly flying ability is an adaptive response under these conditions. We concluded that, at the provincial scale in China, temperature-related and precipitation-related variables are the main determinant factors for body size and aspect ratio of herbivorous and predaceous ladybirds, respectively; and their magnitude of effects on body shape depends on the trophic positions.
引文
Ahn CH,Tateishi R(1994)Development of a global 30-minute grid potential evapotranspiration data set.Photogrammetry and Remote Sensing,33,12-21.
    Allen JA(1877)The influence of physical conditions in the genesis of species.Radical Review,1,108-140.
    Arnett AE,Gotelli NJ(2003)Bergmann’s rule in larval ant lions:testing the starvation resistance hypothesis.Ecological Entomology,28,645-650.
    Azevedo RBR,James AC,Mc Cabe J,Partridge L(1998)Latitudinal variation of wing:thorax size ratio and wing-aspect ratio in Drosophila melanogaster.Evolution,521353-1362.
    Barbault R(1988)Body size,ecological constraints,and the evolution of life-history strategies.Evolutionary Biology22,261-286.
    Bergmann C(1847)Ueber die Verh?ltnisse der W?rme?konomie der Thiere zu ihrer Gr?sse.Gottinger Studien,3,595-708.
    Blackburn TM,Gaston KJ,Loder N(1999)Geographic gradients in body size:a clarification of Bergmann’s rule.Diversity and Distributions,5,165-174.
    Blanckenhorn WU,Demont M(2004)Bergmann and converse Bergmann latitudinal clines in arthropods:two ends of a continuum?Integrative and Comparative Biology,44,413-424.
    Brown JH,Gillooly JF,Allen AP,Savage VM,West GB(2004)Toward a metabolic theory of ecology.Ecology,851771-1789.
    Chown SL,Gaston KJ(2010)Body size variation in insects:a macroecological perspective.Biological Reviews,85139-169.
    Comont RF,Roy HE,Lewis OT,Harrington R,Shortall CRPurse BV(2012)Using biological traits to explain ladybird distribution patterns.Journal of Biogeography,39,1772-1781.
    Diniz-Filho JAF,Bini LM,Hawkins BA(2003)Spatial autocorrelation and red herrings in geographical ecology.Global Ecology and Biogeography,12,53-64.
    Dormann CF,Elith J,Bacher S,Buchmann C,Carl G,CarréGMarquéz JRG,Gruber B,Lafourcade B,Leit?o PJ,Münkemüller T,Mc Clean C,Osborne PE,Reineking B,Schr?der B,Skidmore AK,Zurell D,Lautenbach S(2013)Collinearity:a review of methods to deal with it and a simulation study evaluating their performance.Ecography,36,27-46.
    Dutilleul P(1993)Modifying the t test for assessing the correlation between two spatial processes.Biometrics,49305-314.
    Fagan WF,Siemann E,Mitter C,Denno RF,Huberty AFWoods HA,Elser JJ(2002)Nitrogen in insects:implications for trophic complexity and species diversification.The American Naturalist,160,784-802.
    Gardner JL,Peters A,Kearney MR,Joseph L,Heinsohn R(2011)Declining body size:a third universal response to warming.Trends in Ecology and Evolution,52,285-291.
    Gruner DS(2003)Regressions of length and width to predict arthropod biomass in the Hawaiian Islands.Pacific Science57,325-336.
    Hoffmann AA,Shirriffs J(2002)Geographic variation for wing shape in Drosophila serrata.Evolution,56,1068-1073.
    Huang XL(黄晓磊),Qiao GX(乔格侠)(2006)Research status and trends in aphidology.Acta Entomologica Sinica(昆虫学报),49,1017-1026.(in Chinese with English abstract)
    Kuang XJ(匡先矩),Ge F(戈峰),Xue FS(薛芳森)(2015)Geographic variation in body size and sexual dimorphism in insects.Acta Entomologica Sinica(昆虫学报),58,351-360(in Chinese with English abstract)
    Martinson HM,Schneider K,Gilbert J,Hines JE,Hamb?ck PA,Fagan WF(2008)Detritivory:stoichiometry of a neglected trophic level.Ecological Research,23,487-491.
    Masakis S(1967)Geographic variation and climatic adaptation in a field cricket(Orthoptera:Gryllidae).Evolution,21725-741.
    Mousseau TA(1997)Ectotherms follow the converse to Bergmann’s rule.Evolution,51,630-632.
    New M,Hulme M,Jones P(1999)Representing twentieth-century space-time climate variability.Part I.Development of a 1961-90 mean monthly terrestrial climatology Journal of Climate,12,829-856.
    Nylin S,Sv?rd L(1991)Latitudinal patterns in the size of European butterflies.Ecography,14,192-202.
    Pang H(庞虹)(2001)Current situation of the systematics of Coccinellidae.Entomological Knowledge(昆虫知识),3917-22.(in Chinese with English abstract)
    Pang H(庞虹),Ren SX(任顺祥),Zeng T(曾涛),Pang XF(庞雄飞)(2004)Biodiversity and Their Utilization of Coccinellidae in China(中国瓢虫物种多样性及其利用).Guangdong Science and Technology Press,Guangzhou.(in Chinese)
    Park O(1949)Application of the converse Bergmann principle to the carabid beetle,Dicaelus purpuratus.Physiological Zoology,22,359-372.
    Peters R(1983)Nuclear envelope permeability measured by fluorescence microphotolysis of single liver cell nuclei.Journal of Biological Chemistry,258,11427-11429.
    Qian H(2013)Environmental determinants of woody plant diversity at a regional scale in China.PLo S ONE,8,e75832.
    Quinn GP,Keough MJ(2002)Experimental Design and Data Analysis for Biologists.Cambridge University Press,Cambridge.
    Rangel TF,Diniz-Filho JAF,Bini LM(2010)SAM:a comprehensive application for spatial analysis in macroecology.Ecography,33,46-50.
    Ren SX(任顺祥),Wang XM(王兴民),Pang H(庞虹),Peng ZQ(彭正强),Zeng T(曾涛)(2009)Colored Pictorial Handbook of Ladybird Beetles(中国瓢虫原色图鉴).Science Press,Beijing.(in Chinese)
    Renault D,Hance T,Vannier G,Vernon P(2003)Is body size an influential parameter in determining the duration of survival at low temperatures in Alphitobius diaperinus Panzer(Coleoptera:Tenebrionidae)?Journal of Zoology,259,381-388.
    Rogers LE,Hinds WT,Buschbom RL(1976)A general weight vs.length relationship for insects.Annals of the Entomological Society of America,69,387-389.
    Shelomi M(2012)Where are we now?Bergmann’s rule sensu lato in insects.The American Naturalist,180,511-519.
    Sheridan JA,Bickford D(2011)Shrinking body size as an ecological response to climate change.Nature Climate Change,1,401-406.
    Vandewoestijne S,Van Dyck H(2011)Flight morphology along a latitudinal gradient in a butterfly:Do geographic clines differ between agricultural and woodland landscapes?Ecography,34,876-886.
    Wang XM(王兴民),Chen XS(陈晓胜),Qiu BL(邱宝利),Ren SX(任顺祥)(2014)Methods and technologies for collecting,surveying and sampling predatory ladybirds(Coleoptera:Coccinellidae).Chinese Journal of Applied Entomology(应用昆虫学报),51,1362-1366.(in Chinese with English abstract)
    Yom-Tov Y,Geffen E(2006)Geographic variation in body size:the effects of ambient temperature and precipitation.Oecologia,148,213-218.
    Zhang J(张健),Chen SB(陈圣宾),Chen B(陈彬),Du YJ(杜彦君),Huang XL(黄晓磊),Pan XB(潘旭斌),Zhang Q(张强)(2013)Citizen science:integrating scientific research,ecological conservation and public participation.Biodiversity Science(生物多样性),21,738-749.(in Chinese with English abstract)
    Zhang MG,Zhou ZK,Chen WY,Slik JWF,Cannon CH,Raes N(2012)Using species distribution modeling to improve conservation and land use planning of Yunnan,China.Biological Conservation,153,257-264.
    Zhao J(赵静),Cui NN(崔宁宁),Zhang F(张帆),Yin XC(印象初),Xu YY(许永玉)(2010)Effects of body size and fat content on cold tolerance in adults of Harmonia axyridis(Pallas)(Coleoptera:Coccinellidae).Acta Entomologica Sinica(昆虫学报),52,1213-1219.(in Chinese with English abstract)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700