用户名: 密码: 验证码:
基于纳米铝热剂的MEMS固体微推力器点火实验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental Study on Ignition of MEMS Microthruster Based on Nanothermite Solid Propellant
  • 作者:卢国权 ; 刘旭辉 ; 魏延明 ; 杨灵芝 ; 陈明阳 ; 李飞 ; 余西龙
  • 英文作者:LU Guo-quan;LIU Xu-hui;WEI Yan-ming;YANG Ling-zhi;CHEN Ming-yang;LI Fei;YU Xi-long;Beijing Institute of Control Engineering;State Key Laboratory of High Temperature Gas Dynamics,Institute of Mechanics,Chinese Academy of Science;
  • 关键词:固体微推力器 ; 纳米铝热剂 ; 真空 ; 动态测试 ; 羽流
  • 英文关键词:Solid micro-thruster;;Nanothermite propellant;;Vacuum;;Dynamic test;;Plume
  • 中文刊名:TJJS
  • 英文刊名:Journal of Propulsion Technology
  • 机构:北京控制工程研究所;中国科学院力学研究所高温气体动力国家重点实验室;
  • 出版日期:2019-01-03 16:27
  • 出版单位:推进技术
  • 年:2019
  • 期:v.40;No.262
  • 基金:中国科学院科研仪器设备研制项目(YZ201637)
  • 语种:中文;
  • 页:TJJS201904027
  • 页数:8
  • CN:04
  • ISSN:11-1813/V
  • 分类号:231-238
摘要
MEMS固体微推力器可以形成单元数量巨大的微推力器阵列,适合低成本微、纳卫星系统,是极具潜力的新型卫星推力器。为研究基于纳米铝热剂的MEMS推力器工作特性,开展了大气和真空点火实验。大气下的燃烧羽流与空气进一步燃烧,导致羽流的发光持续时间约数ms,远大于真空试验,过估了在真空条件下的推力器作用时间。真空试验获得了动态推力特征和有效工作时间(约250μs),估算推力器的冲量约55μN·s~80μN·s。羽流影响范围的直径约为30mm、流向约70mm,羽流颗粒的运动速度约132m/s。测试结果显示,底部点火先将推进剂挤出喷孔,而后在外部燃烧和爆炸。羽流形貌有两种特征:一种是剧烈爆炸,产生蘑菇云状气体产物;而另一种未产生气状产物。前者的冲量和有效工作时间大于后者。
        Combined with micro electro mechanical systems(MEMS),solid propellant micro-thruster can form array with gigantic unit number. This new thruster has great potential for micro/nano-satellite. For studying the operation performance of the thruster with nanothermite propellant, experiments were done at both atmospheric and vacuum conditions. Due to the continuous reaction between plume and the surround air,duration of plume emission is far longer than vacuum. Therefore,atmospheric test overestimates the effective time of thruster. For vacuum cases,the dynamic thrust characteristic and the effective time(about 250μs)were obtained,inferring the impulse about 55μN·s~80μN·s. Particle velocity of the plume is about 132 m/s and the diameter of the influence range is about 30 mm while streamwise length is about 70 mm. These diagnoses indicate that the propellant was pushed out of the combustor by the base ignition before its explosion and combustion. Two plume characteristics were found in vacuum case,first had violent explosions and gas product like mushroom while the second without gas product. The impulse and effective time of the former characteristic are greater than the latter.
引文
[1] Mueller J,Mueller J. Thruster Options for Microspacecraft-A Review and Evaluation of Existing Hardware and Emerging Technologies[R]. AIAA 97-3058.
    [2] Lewis D H,Janson S W,Cohen R B,et al. Digital Micro Propulsion[C]. Orlando:Twelfth IEEE International Conference,2000.
    [3] Larangot B,Conèdèra V,Dubreuil P,et al. Solid Propellant Micro Thruster:An Alternative Propulsion Device for Nanosatellite[J]. Aerospace Energetic Equipment,2002,22(1):12-14.
    [4] Wu M H,Yetter R A,Yang V. Development and Characterization of Ceramic Micro Chemical Propulsion and Combustion Systems[R]. AIAA 2008-966.
    [5]杨灵芝,魏延明,刘旭辉. MEMS固体微推力器阵列发展研究[J].空间控制技术与应用,2016,42(1):13-19.
    [6] Youngner D W,Lu S T,Choueiri E,et al. MEMS Mega-Pixel Micro-Thruster Arrays for Small Satellite Station Keeping[C]. LoGan:The 14th Annual/USU Conference on Small Satellites,2000.
    [7] Chaalane A,Larangot B,Rossi C,et al. Main Directions of Solid Propellant Micro-Propulsion Activity at LAAS[R]. AIAA 2004-6706.
    [8] Lee J,Kim K,Kwon S. Design,Fabrication,and Testing of MEMS Solid Propellant Thruster Array Chip on Glass Wafer[J]. Sensors and Actuators A:Physical,2010,157(1):126-134.
    [9] Zhang K,Chou S K,Ang S S. MEMS-Based Solid Propellant Microthruster Design,Simulation,Fabrication,and Testing[J]. Journal of Microelectromechanical Systems,2004,13(2):165-175.
    [10] Zhang K L,Chou S K,Ang S S,et al,A MEMS-Based Solid Propellant Microthruster with Au/Ti Igniter[J].Sensor and Actuators A:Physical,2005,122(1):113-123.
    [11] Orieux S,Rossi C,Este`ve D. Thrust Stand for Ground Tests of Solid Propellant Microthrusters[J]. Review of Scientific Instruments,2002,73(7):2694-2698.
    [12] Zheng Y,Zhang G,Yang L,et al. MEMS-Based Propulsion with Solid Propellant for Micro Satellite[C]. Istanbul:The 2nd International Conference on Recent Advances in Space Technologies,2005.
    [13]徐超,李兆泽,万红,等. MEMS固体微推进器中Cr薄膜点火电阻的研究[J].传感技术学报,2006,19(5a):1411-1414.
    [14]陈默.基于MEMS的4×4微推进阵列制备及性能研究[D].南京:南京理工大学,2010.
    [15]王成玲. MEMS数字固体微推进器的制备与性能研究[D].南京:南京理工大学,2014.
    [16]刘旭辉,方蜀州.微型固体推力器阵列寻址点火控制系统研究[J].固体火箭技术,2010,33(6):708-712.
    [17] Tosin M,Granziera F,Gibim L,et al. Solid Propellant Micro Thruster Design-A Brief Discussion about Its Viability and Applications[C]. Washington D C:CANEUS Conference on Micro-Nano-Technologies,2004.
    [18]杨灵芝,陈明阳,魏延明,等. MEMS固体微推力器阵列驱动控制系统设计与试验[J].推进技术,2017,38(9):2115-2121.(YANG Ling-zhi,CHEN Mingyang,WEI Yan-ming,et al. Design and Experiments of Driving and Control System for MEMS Solid Propellant Micro-Thruster Array[J]. Journal of Propulsion Technology,2017,38(9):2215-2121.)
    [19] Rossi C. Micropropulsion for Space-A Survey of MEMSBased Micro Thrusters and Their Solid Propellant Technology[J]. Advanced Micro-and Nanosystems,2015,10(1):257-292.
    [20] Baijot V,Glavier L,Ducere J M,et al. Modeling the Pressure Generation in Aluminum-Based Thermites[J].Propellants,Explosives,Pyrotechnics,2015,40(3):402-412.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700