用户名: 密码: 验证码:
缙云山针阔混交林碳通量变化特征及影响因子研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characteristics of Carbon Fluxes and Their Response to Environmental Factors in Ecosystems of Mixed Coniferous and Broad-leaved Forests in Jinyun Mountain
  • 作者:王倩 ; 王云琦 ; 马超 ; 王彬 ; 李一凡
  • 英文作者:WANG Qian;WANG Yun-qi;MA Chao;WANG Bin;LI Yi-fan;Jinyun Forest Ecosystem Research Station, School of Soil and Water Conservation, Beijing Forestry University;Beijing Engineering Research Center of Soil and Water Conservation;
  • 关键词:CO_2通量 ; 涡度相关法 ; 森林碳汇 ; 环境因子 ; 通径分析
  • 英文关键词:CO_2 flux;;eddy covariance;;forest carbon sinks;;environmental factor;;path analysis
  • 中文刊名:CJLY
  • 英文刊名:Resources and Environment in the Yangtze Basin
  • 机构:北京林业大学水土保持学院重庆缙云山三峡库区森林生态系统国家定位观测研究站;北京市水土保持工程技术研究中心;
  • 出版日期:2019-03-15
  • 出版单位:长江流域资源与环境
  • 年:2019
  • 期:v.28
  • 基金:国家林业局重点项目(2017-02)
  • 语种:中文;
  • 页:CJLY201903007
  • 页数:12
  • CN:03
  • ISSN:42-1320/X
  • 分类号:75-86
摘要
基于涡度相关技术,以2016年6月~2017年5月的通量数据为依据,分析了缙云山针阔混交林生态系统碳通量变化特征及其对环境因子的响应。结果表明:各月CO_2通量平均日变化呈"U"字形,最小值出现在7月,为-0.95 mg·m~(-2)·s~(-1),最大值在12月,为0.43 mg·m~(-2)·s~(-1),CO_2通量正负值转换时刻具有明显的季节变化规律,夏季日碳汇时间最长,冬季日碳汇时间最短;净生态系统碳交换量累积量除12月为正值(20.38 gC·m~(-2)·mon~(-1)),表现为碳源外,其他月份均为负值,表现为碳汇,碳积累量最多的是7月(-129.53 gC·m~(-2)·mon~(-1)),净生态系统碳交换、生态系统呼吸、总生态系统碳交换年总量分别为-566.49、1 196.68、-1 761.63 gC·m~(-2)·a~(-1);光合有效辐射是影响日间净碳交换量的主导因子,二者关系符合Michaelis-Menten模型,日间净碳交换量随光合有效辐射增大而降低,光合有效辐射PAR能解释14.1%~58.2%的日间净碳交换量变化,饱和水汽压差是日间净碳交换量限制因子,最适范围是0.5~1.0 kPa,过高和过低均会使日间净碳交换量对光合有效辐射的响应减弱;影响夜间净碳交换量的主导因子是5 cm土温,二者关系符合Van’t Hoff模型,夜间净碳交换量随5 cm土温增大而增加,土壤体积含水率是夜间净碳交换量的限制因子,饱和水汽压差大于或小于0.28 m~(-3)·m~(-3)均会对夜间净碳交换量产生抑制作用,但作用较小。缙云山针阔混交林净生态系统碳交换能力与相近纬度其他森林生态系统基本持平,总生态系统碳交换能力和生态系统呼吸强度则较大。
        On the basis of eddy covariance technique and flux data from June, 2016 to May, 2017, the characteristics of carbon flux in the mixed broadleaf-conifer forest ecosystem in Jinyun Mountain and its response to environmental factors are analyzed. The results show that the mean inte_(Rd)iu_(Rn)al variation of monthly CO_2 flux presented a "U" shape during the study, and the minimum value is-0.95 mg·m~(-2)·s~(-1 )in July and the maximum value is 0.43 mg·m~(-2)·s~(-1 )in December. Moreover, there is obvious seasonal variation in the transition time of CO_2 flux positive and negative values, among them, the time of daily carbon sink is the longest in summer and the shortest in winter; the NEE cumulant is negative and presented as carbon sink in 12 months of one year except December, in which is positive(20.38 gC·m~(-2)·mon~(-1)) and presented as carbon source, the largest carbon accumulation is in July(-129.53 gC·m~(-2)·mon~(-1)), NEE, ER and total GEE are-566.49, 1 196.68 and-1 761.63 gC·m~(-2)·a~(-1)·a~(-1) respectively.Furthermore, PAR is the dominant factor affecting the NEEd, the relationship between them is consistent with the Michaelis-Menten model, NEE_(d )decreases with the increase of PAR, and PAR can explain the change NEE_(d )of 14.1%-58.2%; VPD is the limiting factor of NEE_d, whose optimal range is 0.5-1 kPa, because too high or too low will reduce the response of NEE_(d )to PAR; 5 cm T_s is the dominant factor affecting NEE_n,the relationship between them is consistent with the Van't Hoff model, and NEE_n increases with the increase of 5 cm T_s; SWC is the limiting factor of NEE_n, when SWC is greater or less than 0.28 m~(-3)·m~(-3), it will inhibit the NEE_n with little effect. To sum up, the NEE capacity of mixed broadleaf-conifer forest in Jinyun Mountain is basically equal to that of other forest ecosystems at similar latitudes, while the total ecosystem exchange capacity and ecosystem respiratory intensity are larger.
引文
[1] 温腾, 徐德琳, 徐驰,等. 全球变化背景下的现代生态学——第六届现代生态学讲座纪要[J]. 生态学报, 2012, 32(11):3606-3612.WEN T, XU D L, XU C, et al.Overview on the 6th international symposium on ecology series of 2011[J]. Acta Ecologica Sinica, 2012, 32(11): 3606-3612.
    [2] 陈云飞, 江洪, 周国模,等. 人工高效经营雷竹林CO2通量估算及季节变化特征[J]. 生态学报, 2013, 33(11):3434-3444.CHEN Y F, JIANG H, ZHOU G M, et al. Etimation of CO2 fluxes and its seasonal variations from the effective management Lei bamboo(PhyllosTachysViolascens)[J]. Acta Ecologica Sinica, 2013, 33(11): 3434-3444.
    [3] HOPE D, BILLETT M F, CRESSER M S. A review of the export of carbon in river water: Fluxes and processes[J]. Environmental Pollution, 1994,84: 301-324.
    [4] CURTIS P S, HANSON P J, BOLSTAD P, et al. Biometric and eddy-covariance based estimates of annual carbon storage in five eastern North American deciduous forests[J]. Agricultural & Forest Meteorology, 2002, 113(1):3-19.
    [5] MCVEIGH P, SOTTOCOMOLA M, FOLEY N, et al. Meteorological and functional response partitioning to explain interannual variability of CO2, exchange at an Irish Atlantic blanket bog[J]. Agricultural & Forest Meteorology, 2014, 194(3):8-19.
    [6] YU G R, ZHU X J, FU Y L, et al. Spatial patterns and climate drivers of carbon fluxes in terrestrial ecosystems of China[J]. Global Change Biology, 2013, 19(3):798.
    [7] G?K M, COUPéV M H, BERKHOF J, et al. Respiration as the main determinant of carbon balance in European forests[J]. Nature, 2000, 404(6780):861.
    [8] FALGE E, TENHUNEN J, BALDOCCHI D, et al. Phase and amplitude of ecosystem carbon release and uptake potentials as derived from FLUXNET measurements[J]. Agricultural & Forest Meteorology, 2002, 113(1):75-95.
    [9] BALDOCCHI D, FALGE E, GU L, et al. FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities[J]. Bulletin of the American Meteorological Society, 2001, 82(82):2415-2434.
    [10] JHA C S. Seasonal variations of carbon dioxide, water vapor and energy fluxes in tropical Indian mangroves[J]. Forests, 2016, 7(35).
    [11] 谢静. 美国橡树林碳水通量7年变化规律的研究[D]. 北京:北京林业大学, 2013.XIE J. The 7-year variability of carbon and water fluxes of an oak-dominated forest in the USA[D]. Beijing:Beijing Foresty University, 2013.
    [12] 牛晓栋, 江洪, 张金梦,等. 浙江天目山老龄森林生态系统CO2通量特征[J]. 应用生态学报, 2016, 27(1):1-8.NIU X D, JIANG H, ZHANG J M, et al. Characteristics of CO2 flux in an old growth mixed forest in Tianmu Mountain , Zhejiang , China[J]. Chinese Journal of Applied Ecology, 2016, 27(1): 1-8.
    [13] XIAO J, SUN G, CHEN J, et al. Carbon fluxes, evapotranspiration, and water use efficiency of terrestrial ecosystems in China[J]. Agricultural & Forest Meteorology, 2013, 182-183(22):76-90.
    [14] DOUGHTY C E, METCALFE D B, GIRARDIN C A, et al. Drought impact on forest carbon dynamics and fluxes in Amazonia[J]. Nature, 2015, 519(7541):78-82.
    [15] 徐勇峰, 季淮, 薛同良. 洪泽湖湿地杨树林生长季碳通量变化特征及其影响因子[J]. 生态学杂志, 2018, 37(2):322-331.XU Y F, JI H, XUE T L. Variation of net ecosystem carbon flux over a polar plantation during the growing season and its influencing factors in Hung-tse Lake Wetlands[J]. Chinese Journal of Ecology, 2018, 37(2):322-331.
    [16] 谭丽萍, 刘苏峡, 莫兴国,等. 华北人工林水热碳通量环境影响因子分析[J]. 植物生态学报, 2015, 39(8):773-784.TAN L P, LIU S X, MO X G, et al. Environmental controls over energy, water and carbon fluxes in a plantation in Northern China[J]. Chinese Journal of Plant Ecology, 2015, 39(8):773-784.
    [17] 周媛媛, 李新荣, 高艳红,等. 环境因子对沙坡头人工植被区碳通量的影响[J]. 兰州大学学报(自科版), 2017, 53(4):512-520.ZHOU Y Y , LI X R, GAO Y H, et al. Effects of environment factors on the carbon flux of artificial vegetation in Shapotou[J]. Journal of Lanzhou University(Natural Sciences) , 2017, 53(4):512-520.
    [18] SEGAL M, DAVIS J. The impact of deep cumulus reflection on the ground-level global irradiance[J]. Journal of Applied Meteorology, 2010, 31(2):217-222.
    [19] 于贵瑞, 温学发, 李庆康,等. 中国亚热带和温带典型森林生态系统呼吸的季节模式及环境响应特征[J]. 中国科学:地球科学, 2004, 34(s2):84-94.YU G, WEN X F, LI Q K, et al. The seasonal pattern and environmental response characteristics of typical forest ecosystems in subtropical and temperate regions of China [J]. Scientia Sinica(Terrae), 2004, 34(S2):84-94.
    [20] CLARK M L, ROBERTS D A, EWEL J J, et al. Estimation of tropical rain forest aboveground biomass with small-footprint lidar and hyperspectral sensors[J]. Remote Sensing of Environment, 2011, 115(11):2931-2942.
    [21] CASTRO I N, CHI X, BARUFFOL M, et al. Tree diversity enhances stand carbon storage but not leaf area in a subtropical forest[J]. Plos One, 2016, 11(12):e0167771.
    [22] BALDOCCHI D D, HINCKS B B, MEYERS T P. Measuring biosphere-atmosphere exchanges of biologically related gases with micrometeorological methods[J]. Ecology, 1988, 69(5):1331-1340.
    [23] HOLLINGER D Y, KELLIHER F M, BYERS J N, et al. Carbon dioxide exchange between an undisturbed old-growth temperate forest and the atmosphere[J]. Ecology, 1994, 75(1):134-150.
    [24] 于贵瑞孙晓敏. 陆地生态系统通量观测的原理与方法[M]. 北京:高等教育出版社,2006:49-50.YU G R, SUN X M. Principle and method of land ecosystem flux observation[M]. Beijing:Advanced Educetion Press,2006:49-50.
    [25] WILSON K B, BALDOCCHI D D. Comparing independent estimates of carbon dioxide exchange over 5 years at a deciduous forest in the southeastern united states[J]. Journal of Geophysical Research Atmospheres, 2001, 106(D24):34167-34178.
    [26] RUIMY A, JARVIS P G, BALDOCCHI D D, et al. CO2 fluxes over plant canopies and solar radiation: A review advances in ecological research[M]. 1995.
    [27] JEROME E, AUBIENT M, HEINESCH B. Long term carbon dioxide exchange above a mixed forest in the belgian ardennes: Evaluation of different approaches to deduce total ecosystem respiration from eddy covariance measurements[J]. 2010, 12.
    [28] 周丽艳. 中国北方针叶林生态系统碳通量及其影响机制研究[D].北京: 北京林业大学, 2011.ZHOU L Y. Study on carbon flux and its controlling meehanisms in chinese boreal forest eeosystem[D]. Beijing:Beijing Foresty University, 2011.
    [29] FROELICH N, CROFT H, CHEN J M, et al. Trends of carbon fluxes and climate over a mixed temperate-boreal transition forest in southern ontario, Canada[J]. Agricultural & Forest Meteorology, 2015, 211-212:72-84.
    [30] 于雷, 王玉杰, 王云琦,等. 重庆缙云山针阔混交林地土壤呼吸速率及温度敏感性特征分析[J]. 环境科学研究, 2014, 27(1):57-63.YU L , WANG Y J , WANG Y Q , et al. Variations of soil respiration characteristics anf temperature sensitivity in the mixed forest at Jinyun Mountain ,Chongqing[J]. Research of Environmental Scieces, 2014, 27(1):57-63.
    [31] SPUNDA V, KALINA J, URBAN O, et al. Diurnal dynamics of photosynthetic parameters of Norway spruce trees cultivated under ambient and elevated CO2: The reasons of midday depression in CO2 assimilation[J]. Plant Science, 2005, 168(5):1371-1381.
    [32] 黄俊, 麦博儒, 邓雪娇,等. 鼎湖山针阔混交林CO2通量及浓度变化特征[C] 中国气象学会年会 s9 大气成分与天气、气候变化及环境影响. 2017.HUANG J, MAI B R, DENG X J, et al. Characteristics of CO2 flux and concentration variation in pine-width mixed forest in Dinghu Mountain[C]. S9 Atmospheric Composition and Weather, Climate Change and Environmental Impacts of the Annual Meeting of the China Meteorological Society. 2017.
    [33] 赵仲辉, 张利平, 康文星,等. 湖南会同杉木人工林生态系统CO2通量特征[J]. 林业科学, 2011, 47(11):6-12.ZHAO Z L, ZHANG L P, KANG W X, et al. Charateristics of CO2 flux in a Chinese fir plantation ecosystem in Huitong County, Hunan Province[J]. Scientia Slivae Sincae, 2011, 47(11):6-12.
    [34] 沈文清. 江西千烟洲人工针叶林生态系统碳收支研究[D]. 北京:北京林业大学, 2006.SHEN W Q. Carbon budgets of coniferous plantations in Qianyanzhou experimental station, Jiangxi China[D]. Beijing:Beijing Foresty University, 2006.
    [35] 孙成, 江洪, 周国模,等. 我国亚热带毛竹林CO2通量的变异特征[J]. 应用生态学报, 2013, 24(10):2717-2724.SUN C, JIANG H, ZHOU G M, et al. Variation characteristics of CO2 flux in Phyllostachys edulis forest ecosystem in subtropical region of China[J]. Chinese Journal of Applied Ecology, 2013, 24(10):2717-2724.
    [36] YANG F, ZHOU G, HUNT J E, et al. Biophysical regulation of net ecosystem carbon dioxide exchange over a temperate desert steppe in Inner Mongolia, China[J]. Agriculture Ecosystems & Environment, 2012, 142(3):318-328.
    [37] 同小娟, 张劲松, 孟平, 等. 华北低丘山地人工混交林净生态系统碳交换的变化特征[J]. 林业科学, 2010, 46(3):37-43.TONG X J, ZHANG J S, MENG P, et al. Characteristics of net carbon exchange over a mixed plantation in a hilly area of the North China[J]. Scientia Slivae Sincae, 2010, 46(3):37-43.
    [38] ZHANG L H, CHEN Y N, ZHAO R F, et al. Significance of temperature and soil water content on soil respiration in three desert ecosystems in Northwest China[J]. Journal of Arid Environments, 2010, 74(10):1200-1211.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700