用户名: 密码: 验证码:
地基微波辐射计反演的青藏高原东侧甘孜大气温湿廓线分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis on atmospheric profiles retrieved from microwave radiometer observation at Ganzi in the eastern Qinghai-Tibet Plateau
  • 作者:徐桂荣 ; 张文刚 ; 万霞 ; 王斌 ; 冷亮 ; 周伶俐 ; 万蓉
  • 英文作者:XU Guirong;ZHANG Wengang;WAN Xia;WANG Bin;LENG Liang;ZHOU Lingli;WAN Rong;Hubei Key Laboratory for Heavy Rain Monitoring and Warning Research, Institute of Heavy Rain,China Meteorological Administration;
  • 关键词:青藏高原 ; 微波辐射计 ; 探空 ; 大气廓线 ; 云液态水含量
  • 英文关键词:Qinghai-Tibet Plateau;;microwave radiometer;;radiosonde;;atmospheric profile;;cloud liquid water content
  • 中文刊名:HBQX
  • 英文刊名:Torrential Rain and Disasters
  • 机构:暴雨监测预警湖北省重点实验室中国气象局武汉暴雨研究所;
  • 出版日期:2019-06-15
  • 出版单位:暴雨灾害
  • 年:2019
  • 期:v.38;No.156
  • 基金:国家自然科学基金重大研究计划项目(91637211);; 湖北省气象局科技发展基金重点科研项目(2018Z04)
  • 语种:中文;
  • 页:HBQX201903006
  • 页数:11
  • CN:03
  • ISSN:42-1771/P
  • 分类号:49-59
摘要
微波辐射计能够获取分钟级别的大气温湿廓线,可以弥补气象探空在时间分辨率上的不足。本文利用青藏高原东侧甘孜站2017年8—10月并址观测的微波辐射计和探空资料,对微波辐射计反演大气廓线的精度进行分析,并利用这些廓线探讨甘孜大气热力和云水变化特征。分析结果显示,总体上微波辐射计反演参量与探空观测之间具有高相关系数,微波辐射计反演的温度、相对湿度和水汽密度与探空观测的偏差分别为1.3℃、-2%和0.71 g·m~(-3),相应的均方差分别为2.9℃、20%和1.08 g·m~(-3),非强降水对微波辐射计观测质量的影响较小。微波辐射计与探空的温度偏差在多数高度层上小于2℃,能够达到气象业务的偏差要求。非雨天时微波辐射计与探空的相对湿度偏差在多数高度层上约为10%,雨天时相对湿度偏差在3.5 km以下小于5%。基于甘孜微波辐射计资料的统计分析发现,甘孜大气具有白天干热、夜间湿冷的日变化特征,云液态水含量白天较小、夜间较大,而且白天低层云发展较弱、云底较高,夜间低层云发展较强、云底较低。云液态水含量在云天和雨天具有相似的垂直结构,云液态水含量随高度增加先快速增大,然后在一定高度内波动变化,之后又快速变小,能够较好地指示入云和出云的特征。此外,云天低层云的云体主要处在0.1—2.5 km高度,而雨天低层云的云体分布高度范围更大为0—3.5 km高度。这些分析结果表明,微波辐射计反演大气廓线在甘孜具有可用性,能为定量研究云特征提供科学数据。
        Microwave radiometer(MWR) can retrieve atmospheric profiles with a temporal resolution of several minutes, which compensates for the low temporal resolution of the meteorological radiosonde data. In this study, we use the data of MWR and radiosonde observed from August to October in 2017 at Ganzi, a station on the eastern side of the Qinghai-Tibet Plateau(QTP), to analyze the accuracy of atmospheric profiles retrieved from the MWR observation and investigate the properties of atmospheric thermal profiles and cloud liquid water content profiles over Ganzi. The results show that the correlation coefficient between the MWR and radiosonde observations is high. The general deviations of MWR-retrieved temperature, relative humidity and vapour density against the data of radiosonde were 1.3 ℃,-2%, and 0.71 g/m~3,with the corresponding root mean square errors of 2.9 ℃, 20%, and 1.08 g·m~(-3), respectively. The impact of precipitation weather on the accuracy of observed data by the MWR was weak except for heavy rainfall weather conditions. The deviation of temperature profile between the MWR and radiosonde was less than 2 ℃ in most height layers, which can meet the deviation requirement of meteorological operations. The relative humidity deviation between the MWR and radiosonde under non-precipitation condition was about 10% in most height layers, while it was less than 5 % below 3.5 km under precipitation conditions. Based on the statistical analysis of the MWR data in Ganzi, it was found that the atmosphere was dry and hot in daytime while wet and cold at nighttime during the observation period. At the same time, the cloud liquid water content was lower in daytime and larger at nighttime, and the development of low-level clouds was weaker during the daytime with higher cloud base heights and stronger during the nighttime with lower cloud base heights. Moreover, the cloud liquid water content showed a similar vertical structure under cloudy and rainy conditions, in which the cloud liquid water content rapidly increased with height and significantly decreased after a fluctuation within a certain height. This variation well indicated the characteristics of entering and leaving clouds. In addition,the cloud body of low-level clouds under cloudy conditions mainly located at the height of 0.1-2.5 km, while the cloud body of low-level clouds under rainy condition widely spread from the surface to 3.5 km. These analysis results showed that the atmospheric profiles retrieved from the MWR observation were credible at the Ganzi station, and the MWR can provide actual data for quantitative study of cloud characteristics.
引文
蔡英,钱正安,吴统文,等.2004.青藏高原及周边地区大气可降水量的分布、变化与各地多变的降水气候[J].高原气象,23(1):1-10
    陈英英,杨凡,徐桂荣.2015.基于雨雪天气背景的微波辐射计斜路径与天顶观测的反演结果对比分析[J].暴雨灾害,34(4):375-383
    丁一汇,刘俊杰,孙颖,等.2007.东亚梅雨系统的天气-气候学研究[J].大气科学,31(6):1 082-1 101
    郭丽娟,郭学良.2015.利用地基多通道微波辐射计遥感反演华北持续性大雾天气温、湿度廓线的检验研究[J].气象学报,73(2):368-381
    黄治勇,徐桂荣,王晓芳,等.2013.地基微波辐射计资料在短时暴雨潜势预报中的应用[J].应用气象学报,24(5):576-584
    黄治勇,徐桂荣,王晓芳,等.2014.基于地基微波辐射计资料对咸宁两次冰雹天气的观测分析[J].气象,40(2):216-222
    李德俊,唐仁茂,向玉春,等.2012.基于多种探测资料对武汉一次短时暴雪天气的监测分析[J].高原气象,31(5):1 386-1 392
    李国平.青藏高原动力气象学[M].北京:气象出版社,2002
    梁宏,刘晶淼,章建成,等.2006.青藏高原大气总水汽量的反演研究[J].高原气象,25(6):1 055-1 063
    刘红燕,王迎春,王京丽,等.2009.由地基微波辐射计测量得到的北京地区水汽特性的初步分析[J].大气科学,33(2):388-396
    刘红燕.2011.三年地基微波辐射计观测温度廓线的精度分析[J].气象学报,69(4):719-728
    刘建忠,何晖,张蔷.2012.不同时次地基微波辐射计反演产品评估[J].气象科技,40(3):332-339
    刘健文,郭虎,李耀东,等.天气分析预报物理量计算基础[M].北京:气象出版社,2005
    钱维宏.2004.天气学[M].北京:北京大学出版社
    唐仁茂,李德俊,向玉春,等.,2004.地基微波辐射计对咸宁一次冰雹天气过程的监测分析[J].气象学报,70(4):806-813
    施小英,施晓晖.2008.夏季青藏高原东南部水汽收支气候特征及其影响[J].应用气象学报,19(1):41-46
    汪小康,徐桂荣,院琨.2016.不同强度降水发生前微波辐射计反演参数的差异分析[J].暴雨灾害,35(3):227-233
    叶笃正,高由禧.1979.青藏高原气象学[M].北京:科学出版社
    徐桂荣,乐新安,张文刚,等.2016.COSMIC掩星资料反演青藏高原大气廓线与探空观测的对比分析[J].暴雨灾害,35(4):315-325
    徐祥德,陈联寿.2006.青藏高原大气科学试验研究进展[J].应用气象学报,17(6):756-772
    郁淑华.2008.夏季青藏高原低涡研究进展述评[J].暴雨灾害,27(4):367-372
    赵玲,马玉芬,张广兴,等.2010.地基35通道微波辐射计观测资料的初步分析[J].沙漠与绿洲气象,4(1):56-58
    张文刚,徐桂荣,颜国跑,等.2014.微波辐射计与探空仪测值对比分析[J].气象科技,42(5):737-741
    周长艳,李跃清,李薇,等.2005.青藏高原东部及邻近地区水汽输送的气候特征[J].高原气象,24(6):880-888
    Cimini D,Nelson M,Güldner J,et al.2015.Forecast indices from a ground-based microwave radiometer for operation meteorology[J].Atmospheric Measurement Techniques,8:315-333
    Cimini D,Campos E,Ware R,et al.2011.Thermodynamic atmospheric profiling during the 2010 Winter Olympics using ground-based microwave radiometry[J].IEEE Transactions on Geoscience and Remote Sensing,49(12):4 959-4 969
    Cui C,Wan R,Wang B,et al.2015.The Mesoscale Heavy Rainfall Observing System(MHROS)over the middle region of the Yangtze River in China[J].Journal of Geophysical Research:Atmospheres,120.doi:10.1002/2015JD023341
    Holtslag A A M,Svensson G,Baas P,et al.2013.Stable atmospheric boundary layers and diurnal cycles:Challenges for weather and climate models.Bulletin of the American Meteorological Society,94:1 691-1 706
    Liljegren J C,Clothiaux E E,Mace G G,et al.2001.A new retrieval for cloud liquid water path using a ground-based microwave radiometer and measurements of cloud temperature[J].Journal of Geophysical Research,106:14 485-14 500
    Luo Y,Zhang R,Wang H.2009.Comparing occurrences and vertical structures of hydrometeors between eastern China and the Indian monsoon region using CloudSat/CALIPSO data[J].Journal of Climate,22:1052-1 064
    Madhulatha A,Rajeevan M,Ratnam M V,et al.2013.Nowcasting severe convective activity over southeast India using ground-based microwave radiometer observations[J].Journal of Geophysical Research,118:1-13
    Peng S,Xu X,Shi X,et al.2009.The early-warning effects of assimilation of the observations over the large-scale slope of the“World Roof”on its downstream weather forecasting[J].Chinese Science Bulletin,54:706-710
    Shi X,Wang Y,Xu X.2008.Effect of mesoscale topography over the Tibetan Plateau on summer precipitation in China:A regional model study[J].Geophys Res Lett,35,L19707.doi:10.1029/2008GL034740
    Sp?nkuch D,Güldner J,Steinhagen H,et al.2011.Analysis of a dryline-like feature in northern Germany detected by ground-based microwave profiling[J].Meteorologische Zeitschrift,20(4):409-421
    Tan H,Mao J,Chen H,et al.2011.A study of a retrieval method for Temperature and humidity profiles from microwave radiometer observations based on principal component analysis and stepwise regression[J].Journal of Atmospheric and Oceanic Technology,28:378-389
    Venkat Ratnam M,Durga Santhi Y,Rajeevan M,et al.2013.Diurnal variability of stability indices observed using radiosonde observations over a tropical station:comparison with microwave radiometer measurements[J].Atmospheric Research,124:21-33
    Wang C,Shi H,Hu H,et al.2015.Properties of cloud and precipitation over the Tibetan Plateau[J].Advances in Atmospheric Sciences,32(11):1504-1 516
    Ware R,Carpenter R,Güldner J,et al.2003.A multi-channel radiometric profiler of temperature,humidity and cloud liquid[J].Radio Science,38(4):8 079.doi:10.1029/2002RS002856
    Ware R,Cimini D,Campos E,et al.2013.Thermodynamic and liquid profiling during the 2010 Winter Olympics[J].Atmospheric Research,132-133:278-290
    Xie Y,Koch S,McGinley J,et al.2011.A space-time multiscale analysis system:a sequential variational analysis approach[J].Monthly Weather Review,139:1 224-1 240
    Xu G,Cui C,Li W,et al.2011.Variation of GPS precipitable water over the Qinghai-Tibet Plateau:possible teleconnection triggering rainfall over the Yangtze River Valley[J].Terrestrial,Atmospheric and Oceanic Sciences,22(2):195-202
    Xu G,Ware R,Zhang W,et al.2014.Effect of off-zenith observations on reducing the impact of precipitation on ground-based microwave radiometer measurement accuracy[J].Atmospheric Research,140-141:85-94
    Xu G,Xi B,Zhang W,et al.2015.Comparison of atmospheric profiles between microwave radiometer retrievals and radiosonde soundings[J].Journal of Geophysical Research:Atmospheres,120.doi:10.1002/2015JD023438
    Xu G,Yue X,Zhang W,et al.2017.Assessment of atmospheric wet profiles obtained from COSMIC radio occulation observations over China[J].Atmosphere,8:208.doi:10.3390/atmos8110208
    XuX,LuC,Shi X,et al.2008.Worldwater tower:Anatmospheric perspective[J].Geophysical Research Letters,35,L20815.doi:10.1029/2008GL035867
    Xu X,Lu C,Shi X,et al.2010.Large-scale topography of China:A factor for the seasonal progression of the Meiyu rainband[J].Journal of Geophysical Research,115,D02110.doi:10.1029/2009JD012444
    Zhao C,Liu L,Wang Q,et al.2017.MMCR-based characteristic properties of non-precipitating cloud liquid droplets at Naqu site over Tibetan Plateau in July 2014[J].Atmospheric Research,190:68-76

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700