用户名: 密码: 验证码:
智能电表雷电感应过电压防护分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Protection Analysis of Smart Meters Against Lightning Induced Overvoltage
  • 作者:王兆军 ; 矫真 ; 刘丽君 ; 何毓函 ; 李骁 ; 李付存 ; 王者龙
  • 英文作者:WANG Zhaojun;JIAO Zhen;LIU Lijun;HE Liuhan;LI Xiao;LI Fucun;WANG Zhelong;Wucheng Power Supply Company of Shandong Power Company;Shandong Electric Power Research Institute;
  • 关键词:配电线路 ; 雷电感应过电压 ; 智能电表 ; 避雷器
  • 英文关键词:distribution line;;lightning induced overvoltage;;smart meter;;arrester
  • 中文刊名:DCPQ
  • 英文刊名:Insulators and Surge Arresters
  • 机构:国网山东省电力公司电力科学研究院;国网山东省电力公司武城县供电公司;
  • 出版日期:2018-10-25
  • 出版单位:电瓷避雷器
  • 年:2018
  • 期:No.285
  • 语种:中文;
  • 页:DCPQ201805018
  • 页数:6
  • CN:05
  • ISSN:61-1129/TM
  • 分类号:99-104
摘要
智能电表的广泛应用伴随着严重的雷电灾害威胁,需要对智能电表雷电感应过电压防护进行详细分析。利用ATP软件搭建配电系统模型,编程计算线路雷电感应过电压,分析雷击点距线路距离和回击速度对智能电表终端过电压的影响,讨论安装线路避雷器、变压器低压侧避雷器、末端SPD的防护效果。分析结果表明:10 kV线路附近发生雷击时,感应过电压传递至智能电表终端时幅值仍然较高,50 kA雷电流幅值下终端过电压超过IV类设备冲击耐受电压;智能电表终端过电压随着雷击点距线路垂直距离的增加、回击速度的减小而降低;输电线路避雷器安装密度会影响智能电表终端过电压幅值出现概率,避雷器安装越密,幅值较低的过电压出现概率越高;变压器低压侧避雷器能够有效抑制智能电表终端过电压,但抑制效果受变压器与智能电表间连接线路长度影响,线路越长,过电压抑制效果越差。为实现更加精细的智能电表过电压防护,可以在智能电表前面安装末端SPD。
        The wide use of smart meter goes with severe lightning disasters,so it is necessary to study protection of smart meters against lightning induced overvoltage. A model of the distribution system was established in ATP-EMTP and lightning induced overvoltage was calculated by means of programming. Influence of distance from lightning strike point to the distribution line and current wave propagation speed on overvoltage of the smart meter were discussed. Protection effect of arresters and SPD was presented.Simulation results show that: transferred overvoltage due to lighting induction from 10 kV line remains high which exceeds impulse withstand voltage of class IV distribution equipment at 50 kA lightning current amplitude. Overvoltage decreases with the increasing of vertical distance from lightning strike point to the distribution line as well as the decreasing of current wave propagation speed. Probability of lightning overvoltage of the smart meter exceeding the corresponding value is affected by installation density of line arresters. Protection effect of the low voltage arrester decreases with the increasing of 220 V line length.Overvoltage of the smart meter can be inhibited significantly when the terminal SPD is installed.
引文
[1]斯图尔特·博莱斯.智能电网基础设施、相关技术及解决方案[M].北京:机械工业出版社,2015.
    [2]陈思明,尹慧,唐军,等. 10 k V架空配电线路感应雷过电压暂态特性分析[J].电瓷避雷器,2014(2):90-96.CHEN Siming,YIN Hui,ANG Jun,et al. Analysis ontransient characteristic of induction thunder overvoltage in10 k V overhead distribution lines[J]. Insulators and Surge Arresters,2014(2):90-96.
    [3]徐金亮,徐斌,唐学东.农村电网智能电表系统雷电灾害分析及对策[J].电气技术,2013(12):107-111.XU Jinliang,XU Bing,TANG Xuedong. Analysis and countermeasure of lightning damage to intelligent metering systems in rural power network[J]. Electrical Engineering,2013(12):107-111.
    [4]危阜胜,肖勇,党三磊,等.电能计量表计及终端可靠性研究与探索[J].电测与仪表,2013(s1):63-67.WEI Fu-sheng,XIAO Yong,DANG Sanlei,et al. Reliability study and exploration of energy metering meter and terminal[J]. Electrical Measurement&Instrumentation,2013(s1):63-67.
    [5]量度继电器和保护装置,第22-5部分,电气骚扰试验浪涌抗扰度试验GBT 14598. 18—2012[S].北京:中国标准出版社,2012.
    [6]电子设备雷击试验方法GBT 3482—2008[S].北京:中国标准出版社,2008.
    [7]何金良,曾嵘.配电线路雷电防护[M].北京:清华大学出版社,2013.
    [8]张义军,张阳,郑栋,等. 2008—2014年广东人工触发闪电电流特征[J].高电压技术,2016,40(11):3404-3414.ZHANG Yijun,ZHANG Yang,ZHENG Dong,et al. Current characteristics of triggered lightnings in Guangdong from 2008 to 2014[J]. High Voltage Engineering,2016,40(11):3404-3414.
    [9]徐兴发,聂一雄,程汉湘,等.基于改进Agrawal模型和FDTD法的感应雷过电压算法[J].南方电网技术,2014,8(1):27-32.XU Xingfa,NIE Yixiong,CHENG Hanxiang,et al. A calculation method of lightning induced over-voltage with improved agrawal model and FDTD method[J]. Southern Power System Technology,2014,8(1):27-32.
    [10]余占清,曾嵘,王绍安,等.配电线路雷电感应过电压仿真计算分析[J].高电压技术,2013,39(2):415-422.YU Zhanqing,ZENG Rong,WANG Shao'an,et al. Simulation calculation and analysis of lightning induced overvoltage on power distribution lines[J]. High Voltage Engineering,2013,39(2):415-422.
    [11]吴文辉,曹祥林.电力系统电磁暂态计算与EMTP应用[M].北京:中国水利水电出版社,2012.
    [12] PAOLONE M,NUCCI C A,BORGHETTI A,et al. A New interface for lightning induced overvoltages calculation between EMTP and LIOV code[C]//IEEE PES Summer Meeting,Vancouver,Canada,2001.
    [13] KR H. Calculation of lightning-induced voltages in models including lossy ground effects[J]. International Conference on Power Systems Transients(IPST 2003)2003,1-6.
    [14] Frederick M. Tesche,Michel V. Ianoz,Torbjorn Karlsson.EMC分析方法与计算模型[M].北京:北京邮电大学出版社,2009.
    [15] IEEE guide for improving the lightning performance of electric power overhead distribution lines IEEE Std. 1410-2010[S].
    [16]刘荣美,汪友华,张岩.雷电回击电磁模型[J].电瓷避雷器,2014(2):81-89.LIU Rongmei,WANG Youhua,ZHANG Yan. The Lightning return-stroke electromagnetic models[J]. Insulators and Surge Arresters,2014(2):81-89.
    [17]陈绍东.基于自然和人工触发闪电的自动气象站雷电防护试验和理论研究[D].南京:南京信息工程大学,2010.
    [18] YU H Q,CHEN S M,YANG P C. Study on lightning protection of cables and transformer in Microgrid[C]//Nanjing:China International Conference on Electricity Distribution,2011.
    [19]郭红霞,王兆军,王者龙,等.智能电表的雷电浪涌防护分析[J].电瓷避雷器,2017(4):120-124.GUO Hongxia,WANG Zhaojun,WANG Zhelong,et al.Analysis of Lightning Surge Protection for Intelligent Ammeters[J]. Insulators and Surge Arresters,2017(4):120-124.
    [20]交流电气装置的过电压保护和绝缘配合设计规范GB50064—2014[S].北京:中国计划出版社,2014.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700