用户名: 密码: 验证码:
天山山区夏季MαCS时空分布特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Spatiotemporal Distribution Characteristics of MαCS in Summer of Tianshan Mountains
  • 作者:李建刚 ; 姜彩莲 ; 张云惠 ; 杨莲梅 ; 孙鸣婧
  • 英文作者:LI Jiangang;JIANG Cailian;ZHANG Yunhui;YANG Lianmei;SUN Mingjing;Institute of Desert Meteorology,China Meteorological Administration;Center of Central Asia Atmospheric Science Research;Wujiaqu Meteorological Bureau;Xinjiang Meteorological Observatory;
  • 关键词:天山山区 ; MαCS ; 时空分布 ; TBB
  • 英文关键词:Tianshan Mountains;;MαCS;;spatiotemporal distribution;;TBB
  • 中文刊名:GYQX
  • 英文刊名:Plateau Meteorology
  • 机构:中国气象局乌鲁木齐沙漠气象研究所;中亚大气科学研究中心;新疆五家渠市气象局;新疆气象台;
  • 出版日期:2019-06-28
  • 出版单位:高原气象
  • 年:2019
  • 期:v.38
  • 基金:中国沙漠气象科学研究基金项目(SQJ2014008);; 国家重点研发项目(2018YFC1507102);; 国家自然科学基金项目(41565003);; 新疆维吾尔自治区自然科学基金项目(2018D01B06)
  • 语种:中文;
  • 页:GYQX201903015
  • 页数:13
  • CN:03
  • ISSN:62-1061/P
  • 分类号:158-170
摘要
利用常规观测、FY-2E卫星及EC-Interim 0.5°×0.5°再分析资料对2010—2014年夏季天山及其两侧地区α中尺度对流系统(MαCS)的时空分布特点进行分析,并对典型个例的云图特征和环境条件进行了深入的探讨。结果表明:(1) 6月为MαCS出现的高发期且椭圆形MαCS占多数。MαCS形成和发展期主要集中在午后和后半夜,消亡于前半夜,三个时期最易发生时间依次滞后大约2 h,圆形和椭圆形MαCS日频次分别呈单峰和多峰型变化分布。MαCS生命史主要为3~6 h,其中6月生命史分布较广,7—8月较集中;大部分椭圆形MαCS较圆形MαCS生命史和消亡阶段长,圆形MαCS在形成阶段维持时间较长。(2) MαCS多生成于山边平原或浅山区,并在山区主脉上空形成直至成熟,在河谷和山脉两侧的平原区消亡。MαCS成熟期冷云盖长轴长度集中在500~800 km,云顶面积随MαCS出现频次增加而逐渐减小。圆形MαCS发展期移动缓慢,成熟后移速加快,椭圆形MαCS始终移速较慢。MαCS云团TBBmin呈现单峰型且近似正态分布,圆形较椭圆形MαCS的TBB平均梯度大。(3)天山山区MαCS的形成主要是通过层云中多个独立的β中尺度对流云团合并形成。MαCS易发生在高层急流带的抽吸区以及中层低槽前部的辐合上升区,中低层西南和西北气流携带的充沛水汽在大气不稳定层结、不稳定能量持续聚集的背景下辐合上升,促使MαCS不断发展。
        The spatiotemporal distribution characteristics of Meso-α scale Convective System(MαCS) were analyzed in the summer of 2010-2014 in the Tianshan Mountains and their sides area by use of conventional observation and FY-2 E satellite data,the characteristic of cloud image and environmental conditions from typical process was further discussed.The results showed that:(1) MαCS appeared frequently in June with the occurrence of majority of oval MαCS.The initiation and maximization period of MαCS was focused on afternoon and latter half of the night,and it terminated during the first half of the night,the peak time in three periods lagged sequentially about 2 h;the daily variation of circular MαCS and oval MαCS can be described with single-peak and multi-peak changes respectively.The life cycle of MαCS centered on 3~6 h,the frequency distributed widely in June,and intensively from July to August;the most oval MαCS sustained longer than that of circular MαCS.Extended time in stage of formation and dissipation of circular MαCS and oval MαCS respectively was displayed.(2) MαCS generated mostly in hillside plains or shallow areas in the Western Tianshan and inner Tianshan Mountains,and over the main part of central,Southeast and northeast Tianshan Mountains until it reached maximum extent,terminated in Yili Valley plains and on both sides of eastern Tianshan Mountain area at last.The long axis of cold cloud cover in the maturation period of MαCS concentrated mostly on the range between 500 km and 800 km;the area of cloud top decreased with the frequency of MαCS.Circular MαCS moved slowly while developing,and speeded up after the maximization,oval MαCS moved slowly from beginning to end instead.The TBBmin of MαCS cloud cluster showed unimodal and approximately normal distribution.The TBB average gradient in circular MαCS was greater than that in oval MαCS.(3) MαCS in Tianshan Mountains was formed mainly by the merging of more local meso-β scale convective bubble in large-area stratus cloud.The MαCS occurs easily in the pumping area of jet belt in high level and the convergence ascending area in front of trough in the middle-low level,abundant water vapor carried by the southwest and northwest airflow in the middlelow level gathers up under the background of the unstable stratification of the atmosphere and the continuous accumulation of unstable energy,which promotes the continuous development of MαCS.
引文
Anderson C J,Arritt R W,1998.Mesoscale convective complexes and persistent elongated convective systems over the United States during1992 and 1993[J].Monthly Weather Review,126(3):578-599.
    Augustine J A,Howard K W,1991.Mesoscale convective complexes over the United States during 1985[J].Monthly Weather Review,119(7):685-701.
    Carbone R E,Tuttle J D,Ahijevych D A,et al,2002.Inferences of predictability associated with warm season precipitation episodes[J].Journal of Atmospheric Sciences,59(13):2033-2056.
    Doswell III C A,Brooks H E,Maddox R A,1996.Flash flood forecasting:An ingredients-based methodology[J].Weather And Forecasting,11(4):560-581.
    Fritsch J M,Kane R J,Chelius C R,1986.The contribution of mesoscale convective weather systems to the warm-season precipitation in the United States[J].Journal of climate and applied meteorology,25(10):1333-1345.
    Jirak I L,Cotton W R,Mcanelly R L,2003.Satellite and Radar survey of mesoscale convective system development[J].Monthly Weather Review,131(10):2428.
    Laing A G,Fritsch J M,1993.Mesoscale convective complexes in Africa[J].Monthly Weather Review,121(8):2254.
    Leary C A,Rappaport E N,1987.The life cycle and internal structure of a mesoscale convective complex[J].Monthly Weather Review,115(8):1503-1527.
    Maddox R A,1980.Meoscale convective complexes[J].Bulletin of the American Meteorological Society,61(11):1374-1387.
    Miller D,Fritsch J M,1990.Mesoscale convective complexes in the western Pacific Region[J].Monthly Weather Review,119(12):2978-2992.
    Parker M D,Johnson R H,1925.Structures and dynamics of quasi-2d mesoscale convective systems[J].Journal of the Atmospheric Sciences,61(5):545-567.
    Tripoli G J,Cotton W R,2009.Numerical study of an observed orogenic mesoscale convective system.Part 1:Simulated genesis and comparison with observations[J].Monthly Weather Review,117(2):273-304.
    Tucker D F,Crook N A,2010.Flow over heated terrain.Part II:Generation of convective precipitation[M].Monthly Weather Review,133(9):2565.
    Velasco I,Fritsch J M,1987.Mesoscale convective complexes in Americas[J].Journal of Geophysical Research Atmospheres,92(D8):9591-9614.
    Zheng Y,Chen J,Zhu P,2008.Climatological distribution and diurnal variation of mesoscale convective systems over China and its vicinity during summer[J].Chinese Science Bulletin,53(10):1574-1586.
    Zipser E J,1982.Use of a conceptual model of the life-cycle of mesoscale convective systems to improve very-short-range forecasts.Nowcasting[M].Academic Press.
    陈传雷,管兆勇,纪永明,等,2018.辽宁长历时暴雨中尺度对流系统特征分析[J].气象,44(8):1051-1062.
    段旭,张秀年,许美玲,2004.云南及其周边地区中尺度对流系统时空分布特征[J].气象学报,62(2):243-250.
    费增坪,郑永光,王洪庆,2005.2003年淮河大水期间MCS的普查分析[J].气象,31(12):18-22.
    李改琴,杜丽娅,赵海青,等,2016.豫北一次强降水过程的多尺度诊断[J].干旱气象,34(5):828-835.
    梁军,李燕,黄艇,等,2015.2013年辽东半岛2次切变线暴雨的对比分析[J].干旱气象,33(5):822-829.
    马禹,王旭,陶祖钰,1997.Geographic distribution and life cycle of Mesoscale Convective System in China and its vicinity[J].Progress in Natural Science(5):583-589.
    陶祖钰,王洪庆,白洁,等,1995.A case of Mesoscale Convective Complex evolving into a vortex[J].Acta Meteorologica Sinica,9(2):184-189.
    王晓芳,崔春光,2011.暴雨中尺度对流系统研究的若干进展[J].暴雨灾害,30(2):97-106.
    王旭,马禹,2012.新疆中尺度对流系统的地理分布和生命史[J].干旱区地理,35(6):857-864.
    项续康,江吉喜,1995.我国南方地区的中尺度对流复合体[J].应用气象学报,6(1):9-17.
    徐玥,2014.黑龙江省夏季中尺度对流系统天气尺度特征分析[D].兰州:兰州大学,1-66.
    姚俊强,杨青,毛炜峄,等,2018.基于HYSPLIT4的一次新疆天山夏季特大暴雨水汽路径分析[J].高原气象,37(1):68-77.DOI:10.7522/j.issn.1000-0534.2017.00031
    岳治国,牛生杰,梁谷,2008.陕西渭北中尺度对流系统组织模型及灾害分析[J].大气科学学报,31(3):395-402.
    张俊兰,彭军,2017.北疆春季降水相态转换判识和成因分析[J].高原气象,36(4):939-949.DOI:10.7522/j.issn.1000-0534.2016.00094
    张婷,2009.云顶亮温与义乌市降水关系研究[D].浙江金华:浙江师范大学,1-60.
    赵桂香,王晓丽,吴洪,2016.黄河中游地区中尺度对流系统的统计特征[J].干旱气象,34(6):1016-1026.
    赵庆云,傅朝,刘新伟,等,2017.西北东部暖区大暴雨中尺度系统演变特征[J].高原气象,36(3):697-704.DOI:10.7522/j.issn.1000-0534.2016.00140.
    郑永光,陈炯,费增坪,等,2007.2003年淮河流域持续暴雨的云系特征及环境条件[J].北京大学学报(自然科学版),43(2):157-165.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700