用户名: 密码: 验证码:
Cu/Al_2O_3催化剂用于H_2O_2分解生成羟基自由基的效率
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Formation efficiency of hydroxyl radical from H_2O_2 decomposition over Cu/Al_2O_3 catalyst
  • 作者:田鹏飞 ; 盛依依 ; 孙杨 ; 丁豆豆 ; 徐晶 ; 韩一帆
  • 英文作者:TIAN Pengfei;SHENG Yiyi;SUN Yang;DING Doudou;XU Jing;HAN Yifan;State Key Laboratory of Chemical Engineering, East China University of Science and Technology;Research Center of Heterogeneous Catalysis and Engineering Sciences, School of Chemical Engineering and Energy, Zhengzhou University;
  • 关键词:Fenton反应 ; 废水 ; 催化剂 ; 响应面法 ; 双氧水利用率 ; 自由基
  • 英文关键词:Fenton reaction;;waste water;;catalyst;;response surface methodology;;hydrogenperoxide utilization efficiency;;radical
  • 中文刊名:HGSZ
  • 英文刊名:CIESC Journal
  • 机构:化学工程联合国家重点实验室华东理工大学;郑州大学化工与能源学院;
  • 出版日期:2018-08-14 14:51
  • 出版单位:化工学报
  • 年:2018
  • 期:v.69
  • 基金:国家自然科学基金项目(21808057,91534127);; 国家重点研发计划项目(2018YFB0604500)~~
  • 语种:中文;
  • 页:HGSZ201811022
  • 页数:9
  • CN:11
  • ISSN:11-1946/TQ
  • 分类号:225-233
摘要
非均相Fenton催化反应是降解废水中有机污染物的有效方法。提高H_2O_2分解生成羟基自由基(·OH)的利用率是提升废水处理效率、降低成本的关键。使用溶胶-凝胶法制备了Cu/Al_2O_3催化剂,基于·OH的生成效率,通过单因素实验发现反应温度、反应溶液pH及H_2O_2初始浓度是决定H_2O_2利用率的主要因素。通过响应面法进行实验设计,分析响应面方程,考察了H_2O_2初始浓度、溶液pH及反应温度三个因素之间的交互作用及其对反应过程的影响。以H_2O_2利用率的最大化为目标优化反应条件,当H_2O_2初始浓度、溶液pH及反应温度分别为707mg·L~(-1)、5.12及59.4℃时,H_2O_2利用率可高达0.57,与实验结果相对误差仅为3.5%。所得结果对降低废水处理成本、提高降解效率具有重要的指导作用。
        Heterogeneous Fenton reaction is an effective method for the degradation of organic pollutants in the waste water.The improvement of H_2O_2 utilization efficiency for hydroxyl(·OH)production is the primary challenge to enhance the efficiency and reduce the cost for waste water degradation.Cu/Al_2O_3 catalysts were prepared through a sol-gel method.Based on the formation efficiency of·OH,the reaction temperature,the pH of the reaction solution and the initial concentration of H_2O_2 were the main factors determining the utilization of H_2O_2 by single factor experiments.Through the design of experiments via response surface methodology and the analysis of the regression equation,the influence of three independent variables,initial H_2O_2 concentration,pH and reaction temperature,and their interactions on H_2O_2 utilization efficiency was evaluated.To achieve the highest H_2O_2 utilization efficiency,the optimum parameters were determined as 707 mg·L~(-1) of H_2O_2 initial concentration,5.12 of pH and 59.4℃of reaction temperature.The corresponding H_2O_2 utilization efficiency is 0.57 and the relative error is only 3.5%compared with experimental value,suggesting that response surface methodology can provide important guidance on reducing cost and improving efficiency for waste water treatment.
引文
[1]HU Y,CHENG H.Water pollution during China’s industrial transition[J].Environmental Development,2013,8:57-73.
    [2]HUANG C,DONG C,TANG Z.Advanced chemical oxidation:its present role and potential future in hazardous waste treatment[J].Waste Management,1993,13(5):361-377.
    [3]KUZNETSOVA E V,SAVINOV E N,VOSTRIKOVA L A,et al.Heterogeneous catalysis in the Fenton-type system FeZSM-5/H2O2[J].Applied Catalysis B Environmental,2004,51(3):165-170.
    [4]HERMANEK M,ZBORIL R,MEDRIK I,et al.Catalytic efficiency of iron(Ⅲ)oxides in decomposition of hydrogen peroxide:?competition between the surface area and crystallinity of nanoparticles[J].Journal of the American Chemical Society,2007,129(35):10929-10936.
    [5]POURAN S R,AZIZ A,WAN M,et al.Estimation of the effect of catalyst physical characteristics on Fenton-like oxidation efficiency using adaptive neuro-fuzzy computing technique[J].Measurement,2015,59:314-328.
    [6]HE J,MA W,HE J,et al.Photooxidation of azo dye in aqueous dispersions of H2O2/α-FeOOH[J].Applied Catalysis BEnvironmental,2002,39(3):211-220.
    [7]ZHONG X,ROYER S,ZHANG H,et al.Mesoporous silica irondoped as stable and efficient heterogeneous catalyst for the degradation of C.I.Acid Orange 7 using sono-photo-Fenton process[J].Separation&Purification Technology,2011,80(1):163-171.
    [8]YANG X J,XU X M,XU J,et al.Iron oxychloride(Fe OCl):an efficient Fenton-like catalyst for producing hydroxyl radicals in degradation of organic contaminants[J].Journal of the American Chemical Society,2013,135:16058-16061.
    [9]YANG X J,TIAN P F,ZHANG X M,et al.The generation of hydroxyl radicals by hydrogen peroxide decomposition on FeOCl/SBA-15catalysts for phenol degradation[J].AIChE Journal,2015,61:166-176.
    [10]BOKARE A D,CHOI W.Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes[J].Journal of Hazardous Materials,2014,275:121-135.
    [11]ZHANG L,XU D,HU C,et al.Framework Cu-doped Al PO4 as an effective Fenton-like catalyst for bisphenol A degradation[J].Applied Catalysis B:Environmental,2017,207:9-16.
    [12]GRANATO T,KATOVIC A,VALKAJ K M,et al.Cu-silicalite-1catalyst for the wet hydrogen peroxide oxidation of phenol[J].Journal of Porous Materials,2009,16(2):227-232.
    [13]GUZMAN-VARGAS A,DE LA ROSA-PINEDA J E,OLIVER-TOLENTINO M A,et al.Stability of Cu species and zeolite structure on ecological heterogeneous Fenton discoloration-degradation of yellow 5 dye:efficiency on reusable Cu-Y catalysts[J].Environmental Progress&Sustainable Energy,2015,34(4):990-998.
    [14]PAN W,ZHANG G,ZHENG T,et al.Degradation of p-nitrophenol using CuO/Al2O3 as a Fenton-like catalyst under microwave irradiation[J].RSC Advances,2015,5(34):27043-27051.
    [15]SUBBARAMAIAH V,SRIVASTAVA V C,MALL I D.Catalytic activity of Cu/SBA-15 for peroxidation of pyridine bearing wastewater at atmospheric condition[J].AIChE Journal,2013,59(7):2577-2586.
    [16]TARAN O P,ZAGORUIKO A N,AYUSHEEV A B,et al.Wet peroxide oxidation of phenol over Cu-ZSM-5 catalyst in a flow reactor.Kinetics and diffusion study[J].Chemical Engineering Journal,2015,282:108-115.
    [17]BJ?RKBACKA?,YANG M,GASPARRINI C,et al.Kinetics and mechanisms of reactions between H2O2 and copper and copper oxides[J].Dalton Transactions,2015,44(36):16045-16051.
    [18]LYU L,ZHANG L,HU C.Enhanced Fenton-like degradation of pharmaceuticals over framework copper species in copper-doped mesoporous silica microspheres[J].Chemical Engineering Journal,2015,274:298-306.
    [19]LYU L,ZHANG L,HU C,et al.Enhanced Fenton-catalytic efficiency by highly accessible active sites on dandelion-like copper-aluminumsilica nanospheres for water purification[J].Journal of Materials Chemistry A,2016,4(22):8610-8619.
    [20]LYU L,ZHANG L,WANG Q,et al.Enhanced Fenton catalytic efficiency ofγ-Cu-Al2O3 byσ-Cu2+-ligand complexes from aromatic pollutant degradation[J].Environmental Science&Technology,2015,49(14):8639-8647.
    [21]WANG H,ZHANG L,HU C,et al.Enhanced degradation of organic pollutants over Cu-doped La AlO3 perovskite through heterogeneous Fenton-like reactions[J].Chemical Engineering Journal,2018,332:572-581.
    [22]ZHANG Y,LIU C,XU B,et al.Degradation of benzotriazole by a novel Fenton-like reaction with mesoporous Cu/MnO2:combination of adsorption and catalysis oxidation[J].Applied Catalysis B:Environmental,2016,199:447-457.
    [23]SHENG Y Y,SUN Y,XU J,et al.Fenton-like degradation of rhodamine B over highly durable Cu-embedded alumina:kinetics and mechanism[J].AIChE Journal,2018,64:538-549.
    [24]ZHANG X,DING Y,TANG H,et al.Degradation of bisphenol A by hydrogen peroxide activated with CuFeO2 microparticles as a heterogeneous Fenton-like catalyst:efficiency,stability and mechanism[J].Chemical Engineering Journal,2014,236:251-262.
    [25]LAI L,ZHANG L,HU C,et al.Enhanced Fenton-catalytic efficiency by highly accessible active sites on dandelion-like copper-aluminumsilica nanospheres for water purification[J].Journal of Materials Chemistry A,2016,4(22):8610-8619.
    [26]FU L,LI X,LIU M,et al.Insights into the nature of Cu doping in amorphous mesoporous alumina[J].Journal of Materials Chemistry A,2013,1(46):14592-14605.
    [27]EISENBERG G.Colorimetric determination of hydrogen peroxide[J].Industrial&Engineering Chemistry Analytical Edition,1943,15(5):327-328.
    [28]LINDSEY M E,TARR M A.Quantitation of hydroxyl radical during Fenton oxidation following a single addition of iron and peroxide[J].Chemosphere,2000,41(3):409-417.
    [29]JENSEN M C R,VENKATARAMANI K,HELVEG S,et al.Morphology,dispersion,and stability of Cu nanoclusters on clean and hydroxylatedα-Al2O3(0001)substrates[J].The Journal of Physical Chemistry C,2008,112(43):16953-16960.
    [30]TIAN P F,OUYANG L K,XU X Y,et al.The origin of palladium particle size effects in the direct synthesis of H2O2:is smaller better?[J].Journal of Catalysis,2017,349:30-40.
    [31]张国臣.过氧化氢生产技术[M].北京:化学工业出版社,2012:54-72.ZHANG G C.Production Technology of H2O2[M].Beijing:Chemical Industry Press,2012:54-72.
    [32]GOOR G,GLENNEBERG J,JACOBI S.Hydrogen Peroxide[M].Weinheim:Wiley-VCH Verlag GmbH&Co.KGaA,2007:396-397
    [33]YANG X J,XU X M,XU X C,et al.Modeling and kinetics study of Bisphenol A(BPA)degradation over an FeOCl/SiO2 Fenton-like catalyst[J].Catalysis Today,2016,276:85-96.
    [34]ARSLAN-ALATON I,TURELI G,OLMEZ-HANCI T.Treatment of azo dye production wastewaters using photo-Fenton-like advanced oxidation processes:optimization by response surface methodology[J].Journal of Photochemistry and Photobiology A:Chemistry,2009,202(2):142-153.
    [35]WU Y,ZHOU S,QIN F,et al.Modeling physical and oxidative removal properties of Fenton process for treatment of landfill leachate using response surface methodology(RSM)[J].Journal of Hazardous Materials,2010,180(1):456-465.
    [36]MITSIKA E E,CHRISTOPHORIDIS C,FYTIANOS K.Fenton and Fenton-like oxidation of pesticide acetamiprid in water samples:kinetic study of the degradation and optimization using response surface methodology[J].Chemosphere,2013,93(9):1818-1825.
    [37]CRUZ-GONZáLEZ K,TORRES-LóPEZ O,GARCíA-LEóN A,et al.Determination of optimum operating parameters for acid yellow36 decolorization by electro-Fenton process using BDD cathode[J].Chemical Engineering Journal,2010,160(1):199-206.
    [38]LI H,GONG Y,HUANG Q,et al.Degradation of orange II by UV-assisted advanced Fenton process:response surface approach,degradation pathway,and biodegradability[J].Industrial&Engineering Chemistry Research,2013,52(44):15560-15567.
    [39]ZHU X,TIAN J,LIU R,et al.Optimization of Fenton and electroFenton oxidation of biologically treated coking wastewater using response surface methodology[J].Separation and Purification Technology,2011,81(3):444-450.
    [40]王欣,王金翠,殷晓梅,等.乙酰甲胺磷UV-TiO2/类Fenton光催化降解过程的响应面法优化[J].应用化工,2013,42(1):33-40.WANG X,WANG J C,YIN X M,et al.Optimization of photocatalytic degradation of acephate by UV-TiO2/Fenton-like process using response surface methodology[J].Applied Chemical Industry,2013,42(1):33-40.
    [41]ZHANG P,YUAN S,LIAO P.Mechanisms of hydroxyl radical production from abiotic oxidation of pyrite under acidic conditions[J].Geochimicaet Cosmochimica Acta,2016,172:444-457.
    [42]HE J,YANG X,MEN B,et al.Interfacial mechanisms of heterogeneous Fenton reactions catalyzed by iron-based materials:a review[J].Journal of Environmental Sciences,2016,39:97-109.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700