用户名: 密码: 验证码:
甲酸盐和葡萄糖对两种土壤N_2O排放的刺激作用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of formate and glucose organic carbon on N_2O emission from two soils
  • 作者:马舒坦 ; 颜晓元
  • 英文作者:MA Shu-tan;YAN Xiao-yuan;State Key Laboratory of Soil and Sustainable Agriculture,Institute of Soil Science,Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 关键词:根系分泌物 ; 反硝化 ; 真菌 ; 细菌 ; N2O
  • 英文关键词:root exudates;;denitrification;;fungi;;denitrifying fungi;;N2O
  • 中文刊名:NHBH
  • 英文刊名:Journal of Agro-Environment Science
  • 机构:中国科学院南京土壤研究所土壤与农业可持续发展国家重点实验室;中国科学院大学;
  • 出版日期:2019-01-20
  • 出版单位:农业环境科学学报
  • 年:2019
  • 期:v.38;No.281
  • 基金:国家自然科学基金项目(41425005)~~
  • 语种:中文;
  • 页:NHBH201901031
  • 页数:8
  • CN:01
  • ISSN:12-1347/S
  • 分类号:241-248
摘要
为初步探究某些根系分泌物对土壤N_2O排放的影响,采用室内培养的方法,以甲酸盐和葡萄糖为外加碳源(0、0.5、1μmol C·g-1),测定了其对菜地和稻田土壤N_2O排放的影响。结果表明,无外加有机碳源情况下,菜地土壤的N_2O-N(2.65~2.69μg·kg-1)排放量显著小于稻田土壤(6.19~11.79μg·kg-1)(P<0.01);添加葡萄糖的情况下,菜地土壤的N_2O-N(2.47~3.44μg·kg-1)排放量也显著小于稻田土壤(9.55~13.34μg·kg-1)(P<0.01);但在甲酸盐(1μmol C·g-1)的刺激下菜地土壤N_2O-N排放量(54.86μg·kg-1)显著高于稻田土壤(42.40μg·kg-1)(P<0.01);增加施氮量并没有显著增加土壤中N_2O排放。荧光定量PCR结果表明,稻田土壤微生物拷贝数(包括真菌、细菌、反硝化细菌)是菜地的3~8倍。进一步通过高通量测序分析发现,反硝化真菌在菜地中的相对丰度(53.8%),远远高于其在稻田土壤中的丰度(6.6%)。有报道指出,反硝化真菌能够有效地利用甲酸盐产生N_2O,我们的研究也发现小分子有机物质的微量添加可以显著刺激土壤N_2O排放;微生物群落结构可以显著地影响土壤N_2O排放对不同有机碳源添加响应;甲酸盐添加下的菜地土壤中,大量反硝化真菌很可能是N_2O的主要贡献者。
        Incubation experiments were performed to preliminarily investigate the effects of some root exudates on soil N_2O emissions by adding different amounts of formate or glucose(0,0.5,1 μmol C·g-1)to vegetable field and paddy soils. In the absence of formate or glucose, the N_2O-N emissions(2.65~2.69 μg·kg-1)from the vegetable field soil were significantly less than those of the paddy soil(6.19~11.79μg·kg-1)(P<0.01). In the presence of glucose, N_2O-N emissions(2.47~3.44 μg·kg-1)from the vegetable field soils were also significantly less than those of the paddy soil(9.55~13.34 μg·kg-1)(P<0.01). Whereas, in the presence of 1 μmol C·g-1formate, the N_2O-N emissions(54.86 g·kg-1)from vegetable field soils were significantly larger than those of the paddy soil(42.40 g·kg-1)(P<0.01). The amount of NO-3addition didn′t significantly affect soil N_2O emissions. Quantitative PCR and high-throughput sequencing were used to explore the underlying microbial mechanism showing that microbial copy number of the paddy soil(including fungi, bacteria, denitrifying bacteria)was 3~8times higher than that of the vegetable field soil. According to the results of high-throughput sequencing analysis, the relative abundance of denitrifying fungi in vegetable field(53.8%)was much higher than that of the paddy soil(6.6%). It had been reported denitrifying fungi could utilize formate as electronic donor in the process of denitrification. Our results also indicated that low-molecular-weight organic carbon with trace addition significantly stimulated soil N_2O emission, and the effects depended on microbial community structure. Denitrifying fungi probably dominated N_2O emission when the vegetable field soil was amended with formate.
引文
[1] IPCC. Climate change(2013)The physical science basis:Working Group I contribution to the fifth assessment report of the intergovernmental panel on climate change[M]. Cambridge, UK/New York, NY,USA:Cambridge University Press, 2013.
    [2] Fleming E L, Jackman C H, Stolarski R S, et al. A model study of the impact of source gas changes on the stratosphere for 1850-2100[J]. Atmospheric Chemistry and Physics, 2011, 11(16):8515-8541.
    [3] Ravishankara A R, Daniel J S, Portmann R W. Nitrous oxide(N2O):The dominant ozone-depleting substance emitted in the 21st century[J]. Science, 2009, 326(5949):123-125.
    [4] Smith P, Martino D, Cai Z, et al. Agriculture. In climate change 2007:Mitigation. contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change[M]. Cambridge,UK/New York, NY, USA:Cambridge University Press, 2007.
    [5]席瑞泽,付庆灵,杨永强,等.氮肥品种和含水量对水稻土N2O排放速率及排放过程的影响[J].农业环境科学学报, 2017, 36(12):2553-2560.XI Rui-ze, FU Qing-ling, YANG Yong-qiang, et al. Effects of nitrogen fertilization and water content on the process and rate of N2O emission in paddy soils[J]. Journal of Agro-Environment Science, 2017, 36(12):2553-2560.
    [6]韩东亮,朱新萍,胡毅,等.不同水分条件下巴音布鲁克天鹅湖高寒湿地土壤有机碳特征[J].湿地科学2017,(4):509-515.HAN Dong-liang, ZHU Xin-ping, HU Yi, et al. Characteristics of soil organic carbon at Bayinbuluke Swan Lake alpine wetland under different water levels[J]. Wetland Science, 2017, 15(4):509-515.
    [7]石洪艾,李禄军,尤孟阳,等.不同土地利用方式下土壤温度与土壤水分对黑土N2O排放的影响[J].农业环境科学学报, 2013, 32(11):2286-2292.SHI Hong-ai, LI Lu-jun, YOU Meng-yang, et al. Impact of soil temperature and moisture on soil N2O emission from mollisols under different land-use types[J]. Journal of Agro-Environment Science, 2013, 32(11):2286-2292.
    [8] Zhu X, Burger M, Doane T A, et al. Ammonia oxidation pathways and nitrifier denitrification are significant sources of N2O and NO under low oxygen availability[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(16):6328-6333.
    [9] Hu H W, Chen D, He J Z. Microbial regulation of terrestrial nitrous oxide formation:Understanding the biological pathways for prediction of emission rates[J]. Fems Microbiology Reviews, 2015, 39(5):729-749.
    [10]王琳,周晓丽,马银丽,等.铵态氮源和碳源对土壤N2O, CO2释放的影响[J].农业资源与环境学报, 2016, 33(1):23-28.WANG Lin, ZHOU Xiao-li, MA Yin-li, et al. Effect of ammonium nitrogen source on the CO2and N2O emissions of soil[J]. Journal of Agricultural Resources and Environment, 2016, 33(1):23-28.
    [11]高洁,朱思佳,高人,等.有机碳源对森林土壤真菌/细菌活性产生的N2O通量的影响[J].亚热带资源与环境学报, 2016, 11(4):29-36.GAO Jie, ZHU Si-jia, GAO Ren, et al. Effects of exogenous organic carbons on N2O emissions attributable to forest soil fungal/bacterial activities[J]. Journal of Subtropical Resources and Environment, 2016, 11(4):29-36.
    [12] Senbayram M, Chen R, Budai A, et al. N2O emission and the N2O/(N2O+N2)product ratio of denitrification as controlled by available carbon substrates and nitrate concentrations[J]. Agriculture Ecosystems&Environment, 2012, 147:4-12.
    [13]罗永清,赵学勇,李美霞.植物根系分泌物生态效应及其影响因素研究综述[J].应用生态学报, 2012, 23(12):3496-3504.LUO Yong-qing, ZHAO Xue-yong, LI Mei-xia. Ecological effect of plant root exudates and related affecting factors:A review[J]. Chinese Journal of Applied Ecology, 2012, 23(12):3496-3504.
    [14]耿贵.作物根系分泌物对土壤碳,氮含量,微生物数量和酶活性的影响[D].沈阳:沈阳农业大学, 2011.GENG Gui. Effect of crop root exudates on carbon and nitrogen contents, microorganisms quantity and enzyme in soil[D]. Shenyang:Shenyang Agricultural University, 2011.
    [15] Baziramakenga R, Simard R R, Leroux G D. Determination of organicacids in soil extracts by ion chromatography[J]. Soil Biology&Biochemistry, 1995, 27(3):349-356.
    [16] Henry S, Texier S, Hallet S, et al. Disentangling the rhizosphere effect on nitrate reducers and denitrifiers:Insight into the role of root exudates[J]. Environmental Microbiology, 2008, 10(11):3082-3092.
    [17] Morley N J, Richardson D J, Baggs E M. Substrate induced denitrification over or under estimates shifts in soil N2/N2O Ratios[J]. PloS One,2014, 9(9):e108144.
    [18] Giles M E, Daniell T J, Baggs E M. Compound driven differences in N2and N2O emission from soil, the role of substrate use efficiency and the microbial community[J]. Soil Biology&Biochemistry, 2017, 106:90-98.
    [19] Guyonnet J P, Vautrin F, Meiffren G, et al. The effects of plant nutritional strategy on soil microbial denitrification activity through rhizosphere primary metabolites[J]. Fems Microbiology Ecology, 2017, 93(4):fix022.
    [20] Magdziak Z, Mleczek M, Rutkowski P, et al. Diversity of low-molecular weight organic acids synthesized by salix growing in soils characterized by different Cu, Pb and Zn concentrations[J]. Acta Physiologiae Plantarum, 2017, 39(6):137.
    [21] Yin X, Li J H, Shin H D, et al. Metabolic engineering in the biotechnological production of organic acids in the tricarboxylic acid cycle of microorganisms:Advances and prospects[J]. Biotechnology Advances,2015, 33(6):830-841.
    [22] Ma W, Farrell R, Siciliano S. Soil formate regulates the fungal nitrous oxide emission pathway[J]. Applied and Environmental Microbiology,2008, 74(21):6690-6696.
    [23] Feng Y Z, Lin X G, Jia Z J, et al. Identification of formate-metabolizing bacteria in paddy soil by DNA-based stable isotope probing[J].Soil Sci Soc Am J, 2012, 76(1):121-129.
    [24] Wang C, Lu H, Dong D, et al. Insight into the effects of biochar on manure composting:Evidence supporting the relationship between N2O emission and denitrifying community[J]. Environmental Science&Technology, 2013, 47(13):7341-7349.
    [25] Rousk J, Baath E, Brookes P C, et al. Soil bacterial and fungal communities across a pH gradient in an arable soil[J]. Isme Journal, 2010, 4(10):1340-1351.
    [26] Evans C C, LePard K J, Kwak J W, et al. Exercise prevents weight gain and alters the gut microbiota in a mouse model of high fat diet-induced obesity[J]. PloS One, 2014, 9(3):e92193.
    [27] Cheung M K, Au C H, Chu K H, et al. Composition and genetic diversity of picoeukaryotes in subtropical coastal waters as revealed by 454pyrosequencing[J]. The ISME Journal, 2010, 4(8):1053-1059.
    [28] Philippot L, Hallin S, Schloter M. Ecology of denitrifying prokaryotes in agricultural soil[J]. Advances in Agronomy, 2007, 96:249-305.
    [29] Mothapo N, Chen H H, Cubeta M A, et al. Phylogenetic, taxonomic and functional diversity of fungal denitrifiers and associated N2O production efficacy[J]. Soil Biology and Biochemistry, 2015, 83:160-175.
    [30] Uchimura H, Enjoji H, Seki T, et al. Nitrate reductase-formate dehydrogenase couple involved in the fungal denitrification by Fusarium oxysporum[J]. The Journal of Biochemistry, 2002, 131(4):579-586.
    [31] Takaya N, Kuwazaki S, Adachi Y, et al, Hybrid respiration in the denitrifying mitochondria of Fusarium oxysporum[J]. Journal of Biochemistry, 2003, 133(4):461-465.
    [32] Shoun H, Fushinobu S, Jiang L, et al. Fungal denitrification and nitric oxide reductase cytochrome P450nor[J]. Philosophical Transactions of the Royal Society B-Biological Sciences, 2012, 367(1593):1186-1194.
    [33] Nguyen C. Rhizodeposition of organic C by plants:Mechanisms and controls[J]. Agronomie, 2003, 23(5-6):375-396.
    [34]倪玉雪,孙卓玲,尹兴,等.外加可溶性碳源对华北典型农田土壤N2O, CO2排放的影响[J].水土保持学报, 2013, 27(4):222-227.NI Yu-xue, SUN Zhuo-ling, YIN Xing, et al. Influence of soluble carbon on N2O and CO2emissions from soil of typical farm-land in north China[J]. Journal of Soil and Water Conversation, 2013, 27(4):222-227.
    [35] Xia L, Lam S K, Yan X, et al. How does recycling of livestock manure in agroecosystems affect crop productivity, reactive nitrogen losses,and soil carbon balance?[J]. Environmental Science&Technology,2017, 51(13):7450-7457.
    [36]吴金水,林启美,黄巧云,等.土壤微生物生物量测定方法及其应用[M].北京:气象出版社, 2006.WU Jin-shui, LIN Qi-mei, HUANG Qiao-yun, et al. Soil microbial biomass-methods and application[M]. Beijing:China Meterorological Press, 2006.
    [37] Mothapo N V, Chen H H, Cubeta M A, et al. Nitrous oxide producing activity of diverse fungi from distinct agroecosystems[J]. Soil Biology and Biochemistry, 2013, 66:94-101.
    [38] Maeda K, Spor A, Edel-Hermann V, et al. N2O production, a widespread trait in fungi[J]. Scientific Reports, 2015, 5:9697.
    [39]刘松涛,李辉,李茜.设施蔬菜连作障碍的研究进展[J].安徽农学通报, 2013, 19(增刊1):56-58.LIU Song-tao, LI Hui, LI Qian. Research advances in effect of continuous cropping obstacles on facility vegetable[J]. Anhui Agri Sci Bull,2013, 19(Suppl 1):56-58.
    [40] Decock C, Six J. How reliable is the intramolecular distribution of15N in N2O to source partition N2O emitted from soil?[J]. Soil Biology and Biochemistry, 2013, 65:114-127.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700