用户名: 密码: 验证码:
基于孔结构调控强化BEAC工艺生物降解效能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Biodegradation enhancement of BEAC process based on pore structure regulation of carbons
  • 作者:公绪金 ; 董玉奇 ; 李伟光
  • 英文作者:GONG Xu-jin;DONG Yu-qi;LI Wei-guang;School of Energy and Civil Engineering, Harbin University of Commerce;State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology;
  • 关键词:生物增强活性炭 ; 生物降解 ; 吸附 ; 孔结构分布 ; 生物活性
  • 英文关键词:bio-enhanced activated carbon;;biodegradation;;adsorption;;pore structure distribution;;bio-activity
  • 中文刊名:ZGHJ
  • 英文刊名:China Environmental Science
  • 机构:哈尔滨商业大学能源与建筑工程学院;哈尔滨工业大学水资源与水环境国家重点实验室;
  • 出版日期:2019-05-20
  • 出版单位:中国环境科学
  • 年:2019
  • 期:v.39
  • 基金:国家自然科学基金资助项目(51708162);; 黑龙江省普通本科高等学校青年创新人才培养计划(UNPYSCT-2018131);; 哈尔滨商业大学校级科研项目(17XN014)
  • 语种:中文;
  • 页:ZGHJ201905018
  • 页数:8
  • CN:05
  • ISSN:11-2201/X
  • 分类号:130-137
摘要
为进一步提升生物增强活性炭工艺(BEAC)中炭表面的功能菌载持量及生物降解活性,通过CO_2接触氧化与深度活化相结合的压块炭制备改进工艺对煤质净水炭的孔结构进行调控.结果表明:基于改进工艺制备的XHIT型炭的中孔容积(0.7041cm~3/g)及中孔容积率(63.95%)显著提高,其表面复合功能菌初始固定化生物量达到9.13mmol/g(以P计),增殖速率为2.123mmol/(g·d)(以P计).深度活化产生的高含氧量(9.96%)显著降低了XHIT型炭表面吸附作用对水中溶解氧亲和度((0.42±0.07)mgDO/L),功能菌生物降解对水中溶解氧的利用效率达到91.17%.基于XHIT型炭构建的BEAC工艺(通水倍数为39.50m~3/kg)对松花江水源水中的微量有机污染物(COD_(Mn))的平均去除率达到(70.65±15.22)%,有机污染物累积去除量达到94655.50mg COD_(Mn)/kg炭.
        In order to further enhance the immobilization capability and biodegradability of functional bacteria in bio-enhanced activated carbon process(BEAC), pore structure regulation of coal-based activated carbon was conducted by an innovative agglomerated procedure including CO_2 oxidation and depth-activation. New type carbon XHIT was consequently prepared in the present work. Characterization results suggested that the volume(0.7041 cm~3/g) and ratio(63.95%) of meso-porous structure in carbon XHIT were significantly improved. Immobilization capability of functional bacteria on surface of XHIT was also improved synchronously during the pore-structure regulation. The initial immobilized biomass reached up to 9.13 mmol/g(P), and its multiplication rate was 2.123 mmol/(g·d)(P). After depth-activation process, surface oxygen content of XHIT was improved to 9.96%,which caused the significant reduction of dissolved oxygen affinity((0.42±0.07)mg DO/L) during the adsorption process. And this phenomenon also enhanced the dissolved oxygen utilization efficiency in biodegradation(91.28 %). Based on carbon XHIT, BEAC pilot process system was established for purification of source water from Songhua River. Results shows that the removal efficiency and cumulative uptake of organic-pollutants represented by COD_(Mn) reached to(70.65±15.22)% and 94655.50 mg·COD_(Mn)/(kg·Carbon),respectively, with the KBV of 39.50 m~3/kg.
引文
[1] Yu F,Wu Y, Ma J. Influence of the pore structure and surface chemistry on adsorption of ethylbenzene and xylene isomers by KOH-activated multi-walled carbon nanotubes[J]. Journal of Hazardous Materials, 2012,237-238(6):102-109.
    [2] Wang K L,Huang B C,Liu D M,et al. Ordered mesoporous carbons with various pore sizes:Preparation and naphthalene adsorption performance[J]. Journal of Applied Polymer Science,2012,125(5):3368-3375.
    [3] Redding A M, Cannon F S. The role of mesopores in MTBE removal with granular activated carbon[J]. Water Research, 2014,56:214-224.
    [4] Islam M S, Zhang Y, Mcphedran K N, et al. Granular activated carbon for simultaneous adsorption and biodegradation of toxic oil sands process-affected water organic compounds[J]. Journal of Environmental Management, 2015,152:49-57.
    [5] Yapsakli K, Cecen F. Effect of type of granular activated carbon on DOC biodegradation in biological activated carbon filters[J]. Process Biochemistry, 2010,45(3):355-362.
    [6] Sakuma M, Matsushita T, Matsui Y, et al. Mechanisms of trichloramine removal with activated carbon:Stoichiometric analysis with isotopically labeled trichloramine and theoretical analysis with adiffusion-reaction model[J]. Water Research,2014,68C:839-848.
    [7] Qin C, Chen Y, Gao J. Manufacture and characterization of activated carbon from marigold straw(Tagetes erecta L)by H3PO4 chemical activation[J]. Materials Letters, 2014,135:123-126.
    [8]公绪金.中孔型活性炭制备及对As(Ⅲ)/As(Ⅴ)吸附特性研究[J].哈尔滨商业大学学报(自然科学版),2018,34(3):300-306+314.Gong X J. Removal of arsenic from water by innovative coal-based mesoporous activated carbon[J]. Journal of Harbin University of Commerce(Natural Sciences Edition), 2018,34(3):300-306+314.
    [9] Gong X J, Li W G, Wang G Z, et al. Characterization and performance evaluation of an innovative mesoporous activated carbon used for drinking water purification in comparison with commercial carbons[J].Environmental Science and Pollution Research, 2015,22(17):13291-304.
    [10] Mercier A, Joulian C, Michel C, et al. Evaluation of three activated carbons for combined adsorption and biodegradation of PCBs in aquatic sediment[J]. Water Research, 2014,59:304-15.
    [11] Treguer R, Tatin R, Couvert A, et al. Ozonation effect on natural organic matter adsorption and biodegradation--application to a membrane bioreactor containing activated carbon for drinking water production[J]. Water Research, 2010,44(3):781-8.
    [12] Gong X, Li W, Wang K, et al. Study of the adsorption of Cr(VI)by tannic acid immobilised powdered activated carbon from micropolluted water in the presence of dissolved humic acid[J]. Bioresource Technology, 2013,141:145-51.
    [13] Beatriz Acevedo, Carmen Barriocanal,Iwona Lupul,et al. Properties and performance of mesoporous activated carbons from scrap tyres,bituminous wastes and coal[J]. Fuel, 2015,151:83-90.
    [14] Xiao X M, Liu D D, Yan Y J, et al. Preparation of activated carbon from Xinjiang region coal by microwave activation and its application in naphthalene, phenanthrene, and pyrene adsorption[J]. Journal of the Taiwan Institute of Chemical Engineers, 2015,53:160-167.
    [15]张多英,李伟光,公绪金,等.03-BEAC-UV/Cl工艺去除低温水中氨氮的研究[J].中国给水排水,2017,33(1):1-6.Zhang D Y, Li W G, Gong X J, et al. 03-BEAC-UV/Cl Process for Removing Ammonia Nitrogen from Low Temperature Source Water[J]. China Water&Wastewater, 2017,33(1):1-6.
    [16] Gao Y N, Li W G, Zhang D Y, et al. Bio-enhanced activated carbon filter with immobilized microorganisms for removing organic pollutants in the Songhua River[J]. Water Science&Technology,2010,62(12):2819-28.
    [17]公绪金.适宜松花江源水特性及生物增强的活性炭优选[J].水处理技术,2018,44(6):120-125.Gong X J. Optimization of Bio-enhanced Activated Carbon for Songhua River Treatment[J]. Technology of Water Treatment, 2018,44(6):120-125.
    [18]秦雯,李伟光,张多英,等.异养硝化菌生物增强活性炭处理低温水的效能[J].中国给水排水,2013,29(15):34-38.Qin W, Li W G, Zhang D Y, et al. Efficiency of Heterotrophic Nitrification Bacteria in Biologically Enhanced Activated Carbon Process for Treatment of Low Temperature Water[J]. China Water&Wastewater,2013,29(15):34-38.
    [19] Velten S, Hammes F, Boller M, et al. Rapid and direct estimation ofactive biomass on granular activated carbon through adenosine tri-phosphate(ATP)determination[J]. Water Research,2007,41(9):1973-83.
    [20]公绪金.双级生物增强活性炭工艺对低温微污染原水中氨氮的净化效能[J].净水技术,2018,37(4):71-76.Gong X J. Purification efficiency of two-stage biological enhanced activated carbon process for micro-polluted raw water treatment under low temperature[J]. Water Purification Technology, 2018,37(4):71-76.
    [21]刘璟言,卢小燕,尤作亮,等.生物活性炭老化对滤池过滤阻力和处理效果的影响[J].中国环境科学,2016,36(6):1752-1756.Liu J Y, Lu X Y, You Z L, et al. Effect of aged biological activated carbon on the filtration resistance and performance of biological activated carbon filter[J]. China Environmental Science, 2016,36(6):1752-1756.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700