用户名: 密码: 验证码:
不同围压下页岩三轴压缩声发射能量分布特性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on distribution characteristics of shale triaxial compression acoustic emission energy under different confining pressures
  • 作者:韩兵 ; 杨宏伟
  • 英文作者:HAN Bing;YANG Hongwei;Shenyang Research Institute,China Coal Technology and Engineering Group;State Key Laboratory of Coal Mine Safety Technology;
  • 关键词:声发射 ; 围压 ; 压缩试验 ; 能量分布 ; 临界特性 ; 临界指数
  • 英文关键词:acoustic emission;;confining pressure;;compression tests;;energy distribution;;critical characteristics;;critical components
  • 中文刊名:MTKJ
  • 英文刊名:Coal Science and Technology
  • 机构:煤科集团沈阳研究院有限公司;煤矿安全技术国家重点实验室;
  • 出版日期:2019-04-15
  • 出版单位:煤炭科学技术
  • 年:2019
  • 期:v.47;No.533
  • 基金:国家重大科技专项资助项目(2016ZX05045004);; 中国煤炭科工集团有限公司科技创新创业资金专项青年资助项目(2018QN009)
  • 语种:中文;
  • 页:MTKJ201904015
  • 页数:6
  • CN:04
  • ISSN:11-2402/TD
  • 分类号:95-100
摘要
低压、低孔及低渗一直制约着页岩气的开发,随着水力压裂技术在页岩气开采工艺中的广泛应用,使得应力状态下页岩的变形破坏机制的研究具有重要意义。为揭示页岩破坏过程中的演化机理,笔者以重庆地区罗惹坪组页岩为研究对象,在不同围压条件下对采集的岩石样本进行常规三轴压缩声发射试验,记录岩石变形破坏过程的力学参数及声发射数据,利用临界模型定量分析页岩的声发射能量统计分布规律,确定临界特性及临界幂律分布规律,采用最大似然估计法确定幂率分布指数。试验结果表明:页岩在三轴压缩破坏过程中可分为平静阶段、破坏阶段、峰后阶段和稳定阶段;在不同围压条件下页岩声发射能量概率密度遵循幂率无尺度分布规律,3种围压条件下,临界指数分别为1.34、1.40和1.55;临界指数随着围压的升高而增大,围压的存在限制了岩石内部裂隙的产生,降低了岩石内部的"混乱度",减弱了岩石内部结构的劣化。
        The development of shale gas has always been restricted by low pressure,low porosity and low permeability. With the wide application of hydraulic fracturing technology in shale gas mining,the study of deformation and failure mechanism of shale under stress state is of great significance. In order to reveal the evolution mechanism of shale failure process,the author took the Luoreping Formation shale in Chongqing City as the research object,and carried out the conventional triaxial compression acoustic emission test on the rock samples collected under different confining pressure conditions,with the aim of recording the mechanical parameters and acoustic emission data about rock deformation and failure process. The critical model was used to quantitatively analyze the statistical distribution of acoustic emission energy of shale,and determine the critical characteristics and the critical power law distribution,and the maximum likelihood estimation method was used to determine the Power Rate Distribution Index. The test results show that the failure process of shale under triaxial compression can be divided into the calm stage,the failure stage,the post-peak stage and the stable stage; the probability density of acoustic emission energy of shale under different confining pressure follows the distribution law of non-scale power law and the critical exponents under three confining pressures are 1.34,1.40 and 1.55 respectively; the critical components increase as the confining pressure increases; the existence of confining pressure limits the generation of cracks inside the rock,and reduces the " degree of chaos" inside the rock and weakening the deterioration of internal rock structure.
引文
[1]陈尚斌,张楚,刘宇.页岩气赋存状态及其分子模拟研究进展与展望[J].煤炭科学技术,2018,46(1):36-44.CHEN Shangbin,ZHANG Chu,LIU Yu.Research progress and prospect of shale gas occurrence and its molecular simulation[J].Coal Science and Technology,2018,46(1):36-44.
    [2]孟召平,刘翠丽,纪懿明.煤层气/页岩气开发地质条件及其对比分析[J].煤炭学报,2013,38(5):728-736.MENG Zhaoping,LIU Cuili,JI Yiming.Geological conditions of coalbed methane and shale gas exploitation and their comparison analysis[J].Journal of China Coal Society,2013,38(5):728-736.
    [3]HAN Chao,JIANG Zaixing,HAN Mei,et al.The lithofacies and reservoir characteristics of the upper Ordovician and lower Silurian black shale in the southern Sichuan Basin and its periphery[J].Marine and Petroleum Geology,2016,75:181-191.
    [4]马新华,贾爱林,谭健,等.中国致密砂岩气开发工程技术与实践[J].石油勘探与开发,2012,39(5):572-579.MA Xinhua,JIA Ailin,TAN Jian,et al.Tight sand gas development technologies and practices in China[J].Petroleum Exploration and Development,2012,39(5):572-579.
    [5]TANG Hongming,WANG Junjie,ZHANG Liehui,et al.Testing method and controlling factors of specific surface area of shales[J].Journal of Petroleum Science and Engineering,2016,143:1-7.
    [6]郑颖人,刘兴华.近代非线性科学与岩石力学问题[J].岩土工程学报,1996,18(1):98-100.ZHENG Yingren,LIU Xinghua.The problems of modern nonlinear science and rock mechanics[J].Chinese Journal of Geotechnical Engineering,1996,18(1):98-100.
    [7]BONAMY D,BOUCHAUD E.Failure of heterogeneous materials:a dynamic phase transition[J].Physics Reports,2010,498(1):1-44.
    [8]FRIEDMAN N,JENNINGS A T,TSEKENIS G,et al.Statistics of dislocation slip avalanches in nano-sized single crystals show tuned critical behavior predicted by a simple mean field model[J].Physical Review Letters,2012,109(9):6709-6717.
    [9]PRADHAN S,HANSEN A,CHAKRABARTI B K.Failure processes in elastic fiber bundles[J].Reviews of Modern Physics,2010,82(1):499-555.
    [10]HIDALGO R C,KUN F,HERRMANN H J.Creep rupture of viscoelastic fiber bundles[J].Physical Review E,2002,65(1):106-126.
    [11]纪洪广,张月征,金延,等.二长花岗岩三轴压缩下声发射特征围压效应的试验研究[J].岩石力学与工程学报,2012,31(6):1162-1168.JI Hongguang,ZHANG Yuezheng,JIN Yan,et al.Experimental study of confining pressure effect on acoustic emission characteristics of monzonite granite under triaxial compression[J].Chinese Journal of Rock Mechanics and Engineering,2012,31(6):1162-1168.
    [12]纪洪广,卢翔.常规三轴压缩下花岗岩声发射特征及其主破裂前兆信息研究[J].岩石力学与工程学报,2015,34(4):694-702.JI Hongguang,LU Xiang.Characteristics of acoustic emission and rock fracture precursors of granite under conventional triaxial compression[J].Chinese Journal of Rock Mechanics and Engineering,2015,34(4):694-702.
    [13]赵洪宝,尹广志,李华华,等.含瓦斯突出煤声发射特性及其围压效应分析[J].重庆大学学报2013,36(11):101-107.ZHAO Hongbao,YIN Guangzhi,LI Huahua,et al.Analysis on AEcharacteristics and its confining pressure effect of outburst coal containing gas[J].Journal of Chongqing University,2013,36(11):101-107.
    [14]穆康,李天赋,俞缙,等.围压效应下砂岩声发射与压缩变形关系的细观模拟[J].岩石力学与工程学报,2014,33(1):2786-2793.MU Kang,LI Tianfu,YU Jin,et al.Mesoscopic simulation of relationship of acoustic emission and compressive deformation behaviour in sandstone under confining pressures effect[J].Chinese Journal of Rock Mechanics and Engineering,2014,33(1):2786-2793.
    [15]姜德义,何怡,欧阳振华,等.砂岩单轴蠕变声发射能量统计与断面形貌分析[J].煤炭学报,2017,42(6):1436-1442.JIANG Deyi,HE Yi,OUYANG Zhenhua,et al.Acoustic emission energy statistical properties of sandstone during uniaxial creep and its fracture surfaces morphology[J].Journal of china coal society,2017,42(6):1436-1442.
    [16]姜德义,谢凯楠,蒋翔,等.页岩单轴压缩破坏过程中声发射能量分布的统计分析[J].岩石力学与工程学报,2016,35(S2):3822-3828.JIANG Deyi,XIE Kainan,JIANG Xiang,et al.Statistical analysis of acoustic emission energy distribution during uniaxial compression of shale[J].Chinese Journal of Rock Mechanics and Engineering,2016,35(S2):3822-3828.
    [17]谢凯楠,姜德义,蒋翔,等.页岩巴西劈裂试验的能量分布与临界特征分析[J].煤炭学报,2017,42(3):613-620.XIE Kainan,JIANG Deyi,JIANG Xiang,et al.Energy distribution and criticality characteristics analysis of shale Brazilian splitting test[J].Journal of China Coal Society,2017,42(3):613-620.
    [18]秦四清,李造鼎,张倬元,等.岩石声发射技术概论[M].成都:西南交通大学出版社,1993.
    [19]CLAUSET A,SHALIZI C R,NEWMAN M E J.Power-law distributions in empirical data[J].Society for Industrial and Applied Mathematics,2009,51(4):661-703.
    [20]KLOSTER M,HANSEN A,HEMMER P C.Burst avalanches insolvable models of fibrous materials[J].Physical Review Letters,1997,56(3):2615-2625.
    [21]MORENO Y,GOMEZ J B,PACHECO A F.Fracture and secondorder phase transitions[J].Physical Review Letters,2000,85(14):2865-2868.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700