用户名: 密码: 验证码:
秸秆碳对不同施肥水平低肥力土壤碳组分的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of straw-derived carbon on carbon component of the low fertility soil at different nitrogen application rates
  • 作者:何振超 ; 苏瑶 ; 喻曼 ; 陈喜靖 ; 万美霞 ; 沈阿林
  • 英文作者:HE Zhen-chao;SU Yao;YU Man;CHEN Xi-jing;WAN Mei-xia;SHEN A-lin;Environmental Resources and Soil Fertilizer Research Institute, Zhejiang Academy of Agricultural Sciences;College of Resources and Environment, Northwest A&F University;
  • 关键词:秸秆碳 ; 溶解性有机碳 ; 微生物量碳 ; 颗粒有机碳 ; 稳定同位素标记 ; ~(13)C
  • 英文关键词:straw-derived carbon;;dissolved organic carbon(DOC);;microbial biomass carbon(MBC);;particulate organic carbon(POC);;stableisotopelabeling;;~(13)C
  • 中文刊名:NHFZ
  • 英文刊名:Journal of Agricultural Resources and Environment
  • 机构:浙江省农业科学院环境资源与土壤肥料研究所;西北农林科技大学资源环境学院;
  • 出版日期:2019-05-10
  • 出版单位:农业资源与环境学报
  • 年:2019
  • 期:v.36;No.175
  • 基金:国家重点研发计划项目(2017YFD0800600);; 浙江省自然科学基金青年基金项目(LQ18030001);; 浙江省重点研发计划项目(2018C02036);; 国家小麦产业技术体系项目(CARS-3)~~
  • 语种:中文;
  • 页:NHFZ201903008
  • 页数:9
  • CN:03
  • ISSN:12-1437/S
  • 分类号:56-64
摘要
为探明不同施肥水平下秸秆碳对低肥力土壤溶解性有机碳(DOC)、微生物量碳(MBC)和颗粒有机碳(POC)含量的影响,采用碳化硅管原位法,向不同施肥水平(0、120、240 kg·hm~(-2),以纯氮计)的低肥力土壤添加~(13)C标记小麦秸秆,定期取土样测定不同有机碳组分的含量及其δ~(13)C值,并计算秸秆碳在各有机碳库中的转化及贡献比例。研究结果显示,秸秆添加后7 d是快速转化阶段,此后秸秆碳转化渐缓,以向POC转化为主。相较于DOC,秸秆碳更倾向转化为MBC和POC,秸秆添加60 d后的转化比例分别为0.12%~0.38%、4.01%~6.25%15.01%、13.20%~32.85%和33.62%~59.69%。相较于0、240 kg·hm~(-2)的施氮处理,施氮量为120 kg·hm~(-2)时,秸秆添加能同时大幅提高试验土壤的活性和缓效性有机碳库含量。由此表明,秸秆还田条件下,适量施加氮肥更有利于低肥力土壤的培肥与固碳。
        In order to study the effects of straw C on the contents of dissolved organic carbon(DOC), microbial biomass carbon(MBC)and particulate organic carbon(POC)in low-fertility soil at different nitrogen application rates,~(13)C-labeled wheat straw was mixed with low fer?tility soils in the carborundum tube at different nitrogen application rates(0, 120, 240 kg·hm~(-2), pure nitrogen content). Soils were sampled periodically to analyze carbon component contents and its relative δ~(13)C value. Straw C transformation rate and contribution to soil C pool was also calculated. The results showed that straw C was transformed rapidly within the first 7 days, thereafter the decomposition rate slowed down and was dependent on transformation to POC. Compared with DOC, straw C preferred transforming into MBC and POC, with the transformation rate of 0.12%~0.38%, 4.01%~6.25% and 4.74%~9.54% on 60 d after straw addition, respectively. Soil DOC, MBC, and POC contents were increased significantly by straw addition, with 0.29%~15.01%, 13.20%~32.85% and 33.62%~59.69% of respective car?bon derived from straw, respectively. Compared with 0, 240 kg·hm~(-2) application rates, 120 kg hm~(-2) could increase the active and slow or?ganic C pool of the experimental soil simultaneously. All results suggest that straw return with moderate nitrogen application is more condu?cive to both soil fertility improvement and C sequestration of low fertility soil.
引文
[1] He Y T, Zhang W J, Xu M G, et al. Long-term combined chemical and manure fertilizations increase soil organic carbon and total nitrogen in aggregate fractions at three typical cropland soils in China[J]. Science of the Total Environment, 2015, 532(1):635-644.
    [2] Ghani A, Dexter M, Perrott K W. Hot-water extractable carbon in soils:A sensitive measurement for determining impacts of fertilization,grazing and cultivation[J]. Soil Biology&Biochemistry, 2003, 35(9):1231-1243.
    [3] Christensen B T. Physical fractionation of soil and structural and func?tional complexity in organic matter turnover[J]. European Journal of Soil Science, 2001, 52(3):345-353.
    [4]彭新华,张斌,赵其国.土壤有机碳库与土壤结构稳定性关系的研究进展[J].土壤学报, 2004, 41(4):618-623.PENG Xin-hua, ZHANG Bin, ZHAO Qi-guo. A review on relationship between soil organic carbon pool and soil structure stability[J]. Acta Pe?dologica Sinica, 2004, 41(4):618-623.
    [5] Wei H, Guenet B, Vicca S, et al. High clay content accelerates the de?composition of fresh organic matter in artificial soils[J]. Soil Biology&Biochemistry, 2014, 77(7):100-108.
    [6] Zhu L, Hu N, Zhang Z, et al. Short-term responses of soil organic car?bon and carbon pool management index to different annual straw return rates in a rice-wheat cropping system[J]. Catena, 2015, 135:283-289.
    [7] Poll C, Marhan S, Ingwersen J, et al. Dynamics of litter carbon turn?over and microbial abundance in a rye detritusphere[J]. Soil Biology&Biochemistry, 2008, 40(6):1306-1321.
    [8] An T T, Schaeffer S, Zhuang J, et al. Dynamics and distribution of13Clabeled straw carbon by microorganisms affected by soil fertility levels in the blank soil region of northeast China[J]. Biology and Fertility of Soils, 2015, 51(5):605-613.
    [9] Pei J, Li H, Li S, et al. Dynamics of maize carbon contribution to soil organic carbon in association with soil type and fertility level[J]. PLoS ONE, 2015, 10(3):e0120825.
    [10]赵其国.我国中低产土的类型分布与治理开发途径[J].土壤,1988, 20(6):3-7.ZHAO Qi-guo. Type distribution and management development of medium-and low-yield soil in China[J]. Soils, 1988, 20(6):3-7.
    [11] Brookes P. The soil microbial biomass:Concept, measurement and ap?plications in soil ecosystem research[J]. Microbes&Environments,2001, 16(3):131-140.
    [12]梁斌,赵伟,杨学云,等.氮肥及其与秸秆配施在不同肥力土壤的固持及供应[J].中国农业科学, 2012, 45(9):1750-1757.LIANG Bin, ZHAO Wei, YANG Xue-yun, et al. Nitrogen retention and supply after addition of N fertilizer and its combination with straw in the soils with different fertilities[J]. Scientia Agricultura Sinica,2012, 45(9):1750-1757.
    [13] Rudrappa L, Purakayastha T J, Singh D, et al. Long-term manuring and fertilization effects on soil organic carbon pools in a Typic Hap?lustept of semi-arid sub-tropical India[J]. Soil&Tillage Research,2006, 88(1):180-192.
    [14] Iqbal M, vanEs H M, Hassan A U, et al. Soil health indicators as af?fected by long-term application of farm manure and cropping patterns under semi-arid climates[J]. International Journal of Agriculture&Bi?ology, 2014, 16(2):242-250.
    [15]鲍士旦.土壤农化分析[M].三版.北京:中国农业出版社, 1981:30-35.BAO Shi-dan. Soil agrochemical analysis[M]. 3rd Edition. Beijing:China Agriculture Press, 1981:30-35.
    [16] Liang B C, Mackenzie A F, Schnitzer M. et al. Management induced change in labile soil organic matter under continuous corn in eastern Canadian soils[J]. Biology and Fertility of Soils, 1998, 26:88-94.
    [17]吴金水.土壤微生物生物量测定方法及其应用[M].北京:气象出版社, 2006:7.WU Jin-shui. Soil microbial biomass assay and its application[M].Beijing:Meteorological Press, 2006:7.
    [18] Murage E W, Voroney P R. Modification of the original chloroform fu?migation extraction technique to allow measurement ofδ13C of soil mi?crobial biomass carbon[J]. Soil Biology&Biochemistry, 2007, 39(7):1724-1729.
    [19] Wild B, Schnecker J, Alves R J E. et al. Input of easily available or?ganic C and N stimulates microbial decomposition of soil organic mat?ter in Arctic permafrost soil[J]. Soil Biology&Biochemistry, 2014, 75:143-151.
    [20] Conrad R, Klose M, Yuan Q, et al. Stable carbon isotope fractionation,carbon flux partitioning and priming effects in anoxic soils during methanogenic degradation of straw and soil organic matter[J]. Soil Bi?ology&Biochemistry, 2012, 49:193-199.
    [21] Liu C, Lu M, Cui J. et al. Effects of straw carbon input on carbon dy?namics in agricultural soils:A meta-analysis[J]. Global Change Biolo?gy, 2014, 20(5):1366-1381.
    [22] Thomsen I K, Christensen B T. Yields of wheat and soil carbon and ni?trogen contents following long-term incorporation of barley straw and ryegrass catch crops[J]. Soil Use and Management, 2004, 20(4):432-438.
    [23]胡宏祥,马中文,邵致远,等.还田秸秆腐解特征研究[J].湖南农业科学, 2012(5):44-46.HU Hong-xiang, MA Zhong-wen, SHAO Zhi-yuan, et al. Study on the decomposition characteristics of returning straw[J]. Hunan Agricul?tural Sciences, 2012(5):44-46.
    [24] Cogle A L, Saffigna P G, Strong W M. Carbon transformations during wheat straw decomposition[J]. Soil Biology&Biochemistry, 1989, 21(3):367-372.
    [25] Esther O J, Guo C H, Tian X H, et al. The effects of three mineral ni?trogen sources and zinc on maize and wheat straw decomposition and soil organic carbon[J]. Journal of Integrative Agriculture, 2014, 13(12):2768-2777.
    [26]倪进治,徐建民,谢正苗,等.有机肥料施用后潮土中活性有机质组分的动态变化[J].农业环境科学学报, 2003, 22(4):416-419.NI Jin-zhi, XU Jian-min, XIE Zheng-miao, et al. Effects of different organic manure on biologically active organic fractions of soil[J]. Jour?nal of Agro-Environment Science, 2003, 22(4):416-419.
    [27]姬强,孙汉印,王勇,等.土壤颗粒有机碳和矿质结合有机碳对4种耕作措施的响应[J].水土保持学报, 2012, 26(2):132-137.JI Qiang, SUN Han-yin, WANG Yong. et al. Responses of soil partic?ulate organic carbon and mineral-bound organic carbon to four kinds of tillage practices[J]. Journal of Soil and Water Conservation, 2012,26(2):132-137.
    [28]王虎,王旭东,田宵鸿.秸秆还田对土壤有机碳不同活性组分储量及分配的影响[J].应用生态学报, 2014, 25(12):3491-3498.WANG Hu, WANG Xu-dong, TIAN Xiao-hong. Effect of straw-re?turning on the storage and distribution of different active fractions of soil organic carbon[J]. Chinese Journal of Applied Ecology, 2014, 25(12):3491-3498.
    [29] Karhu K, Hilasvuori E, Fritze H, et al. Priming effect increases with depth in a boreal forest soil[J]. Soil Biology&Biochemistry, 2016, 99:104-107.
    [30] Bastida F, Torres I F, Hernández T, et al. Can the labile carbon con?tribute to carbon immobilization in semiarid soils? Priming effects and microbial community dynamics[J]. Soil Biology&Biochemistry, 2013,57(3):892-902.
    [31] Majumder B, Kuzyakov Y. Effect of fertilization on decomposition of14C labelled plant residues and their incorporation into soil aggre?gates[J]. Soil&Tillage Research, 2010, 109(2):94-102.
    [32]关桂红.14C标记冬小麦秸秆分解过程中碳周转规律的研究[D].北京:中国农业大学, 2006.GUAN Gui-hong. Study on carbon turnover during decomposition of14C labeled winter wheat straw[D]. Beijing:China Agricultural Uni?versity, 2006.
    [33] De Troyer I, Amery F, Van Moorleghem C, et al. Tracing the source and fate of dissolved organic matter in soil after incorporation of a13C labelled residue:A batch incubation study[J]. Soil Biology&Biochem?istry, 2011, 43(3):513-519.
    [34] Jansen B, Kalbitz K, Mcdowell W H. Dissolved organic matter:Link?ing soils and aquatic systems[J]. Vadose Zone Journal, 2014, 13(7):51-54.
    [35] Zhao S, Li K, Zhou W, et al. Changes in soil microbial community, en?zyme activities and organic matter fractions under long-term straw re?turn in north-central China[J]. Agriculture Ecosystems&Environment,2016, 216:82-88.
    [36]宋震震.不同施肥制度下潮土活性有机碳库的温变响应[D].泰安:山东农业大学, 2014.SONG Zhen-zhen. Soil labile organic carbon pool made response to temperature changes under different fertilization[D]. Tai′an:Shan?dong Agricultural University, 2014.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700